MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

request help


I need to invert a real function of two real variables Dis[r, n] with
respect to the first variable r, while the second variable n is fixed.
The function is rather difficult, that I couldn't invert it. this is
kindly request you to write me any comments on the attached notebook.

Many thanks for any help,

Berihu


Dis[r_, n_] :=
 1/4 (2 (-2 + Sqrt[(1 + 2 n)^2]) Log[-2 + Sqrt[(1 + 2 n)^2]] -
    2 (2 + Sqrt[(1 + 2 n)^2]) Log[
      2 + Sqrt[(1 + 2 n)^2]] - (-2 +
       Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[-2 +
       Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] + (2 +
       Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[
      2 + Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] - (-2 +
       Sqrt[((1 + 2 n)^2 (1 + 2 n -
          2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[-2 +
       Sqrt[((1 + 2 n)^2 (1 + 2 n -
          2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]] + (2 +
       Sqrt[((1 + 2 n)^2 (1 + 2 n -
          2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[
      2 + Sqrt[((1 + 2 n)^2 (1 + 2 n -
          2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]])

Solve[1/4 (2 (-2 + Sqrt[(1 + 2 n)^2]) Log[-2 + Sqrt[(1 + 2 n)^2]] -
     2 (2 + Sqrt[(1 + 2 n)^2]) Log[
       2 + Sqrt[(1 + 2 n)^2]] - (-2 +
        Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[-2 +
        Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] + (2 +
        Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[
       2 + Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] - (-2 +
        Sqrt[((1 + 2 n)^2 (1 + 2 n -
           2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[-2 +
        Sqrt[((1 + 2 n)^2 (1 + 2 n -
           2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]] + (2 +
        Sqrt[((1 + 2 n)^2 (1 + 2 n -
           2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[
       2 + Sqrt[((1 + 2 n)^2 (1 + 2 n -
           2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]]) ==
  Dis[r, n], r]


  • Prev by Date: Re: How to export a large Grid/Table on a single PDF page?
  • Next by Date: Re: DesignerUnits 2011-01-08 for Mathematica 8, 7, 6
  • Previous by thread: Re: Filtering data from numerical minimization
  • Next by thread: Re: request help