Re: request help
- To: mathgroup at smc.vnet.net
- Subject: [mg116207] Re: request help
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Sat, 5 Feb 2011 05:44:49 -0500 (EST)
You'd have call Solve this way: Solve[Dis[r, n] == z, r] but Mathematica (of course) cannot solve it. I doubt that god could. You might try an approximation such as series = Normal@Series[Dis[r, n], {r, 0, 5}]; Solve[series == z, r] but that may not be useful to you. Otherwise, you'll have to give n and z numeric values and use NSolve or FindRoot. Bobby On Fri, 04 Feb 2011 00:41:22 -0600, Berihu Teklu <berihut at gmail.com> wrote: > I need to invert a real function of two real variables Dis[r, n] with > respect to the first variable r, while the second variable n is fixed. > The function is rather difficult, that I couldn't invert it. this is > kindly request you to write me any comments on the attached notebook. > > Many thanks for any help, > > Berihu > > > Dis[r_, n_] := > 1/4 (2 (-2 + Sqrt[(1 + 2 n)^2]) Log[-2 + Sqrt[(1 + 2 n)^2]] - > 2 (2 + Sqrt[(1 + 2 n)^2]) Log[ > 2 + Sqrt[(1 + 2 n)^2]] - (-2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[-2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] + (2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[ > 2 + Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] - (-2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[-2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]] + (2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[ > 2 + Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]]) > > Solve[1/4 (2 (-2 + Sqrt[(1 + 2 n)^2]) Log[-2 + Sqrt[(1 + 2 n)^2]] - > 2 (2 + Sqrt[(1 + 2 n)^2]) Log[ > 2 + Sqrt[(1 + 2 n)^2]] - (-2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[-2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] + (2 + > Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]) Log[ > 2 + Sqrt[(1 + 2 n)^2 Cosh[2 r]^2]] - (-2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[-2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]] + (2 + > Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]) Log[ > 2 + Sqrt[((1 + 2 n)^2 (1 + 2 n - > 2 Cosh[2 r])^2)/(-2 + (1 + 2 n) Cosh[2 r])^2]]) == > Dis[r, n], r] > -- DrMajorBob at yahoo.com