Re: Generated parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg116282] Re: Generated parameters
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 9 Feb 2011 02:12:46 -0500 (EST)
Because there is more than one solution. sol = Reduce[v/d^(i/-2) == vP/d^(iP/-2) && (iP == -1 || iP == 0), {iP, vP}, Reals, Backsubstitution -> True]; Simplify[sol, {C[1] == 0, d > 0}] (iP == 0 && d^(i/2)*v == vP) || (iP == -1 && d^((1 + i)/2)*v == vP) Or use Solve Simplify[Solve[v/d^(i/-2) == vP/d^(iP/-2) && (iP == -1 || iP == 0), {iP, vP}, Reals], d > 0] {{iP -> -1, vP -> d^((1 + i)/2)*v}, {iP -> 0, vP -> d^(i/2)*v}} Bob Hanlon ---- olfa <olfa.mraihi at yahoo.fr> wrote: ============= Hi Mathematica community, For this system: Reduce[v/d^(i/-2) == vP/d^(iP/-2) && (iP == -1 || iP == 0), {iP, vP}, Reals, Backsubstitution -> True] the output is: (iP == 0 && C[1] \[Element] Integers && d < 0 && i == -2 C[1] && vP == (-d)^-C[1] v) || (iP == 0 && C[1] \[Element] Integers && C[1] <= -1 && d < 0 && i == -2 C[1] && vP == (-d)^-C[1] v) || (iP == 0 && C[1] \[Element] Integers && d < 0 && i == -2 C[1] && vP == -(-d)^-C[1] v) || (iP == 0 && C[1] \[Element] Integers && C[1] <= -1 && d < 0 && i == -2 C[1] && vP == -(-d)^-C[1] v) || (d > 0 && iP == 0 && vP == d^(i/2) v) || (d > 0 && iP == -1 && vP == d^(1/2 + i/2) v) 1)Why Reduce generates parameters for this example? 2) and how to avoid them knowing that for this system the solution that I hope to get is ( iP == 0 && vP == d^(i/2) v) || ( iP == -1 && vP == d^(1/2 + i/2) v) Thank you.