Re: Projectile Launched Around the Earth
- To: mathgroup at smc.vnet.net
- Subject: [mg116431] Re: Projectile Launched Around the Earth
- From: "Ted Ersek" <ersekt at md.metrocast.net>
- Date: Tue, 15 Feb 2011 06:33:23 -0500 (EST)
The code below is n improved and more readable version of the demonstration at <http://demonstrations.wolfram.com/ProjectileLaunchedAroundTheEarth/> http://demonstrations.wolfram.com/ProjectileLaunchedAroundTheEarth/ (*-----------------------------------------------------------------------*) Manipulate[Module[{DiffEquations,ProjectilePosition,ProjectilePath, EarthRadius,ProjectileCrashed,CrashSite,Projectile,Earth}, DiffEquations={D[x[t],t,t] == -4*Pi^2*x[t]*(x[t]^2+y[t]^2)^(-3/2), D[y[t],t,t]==-4*Pi^2*y[t]*(x[t]^2+y[t]^2)^(-3/2), x[0]==0,y[0]==y0,(x=92[0]==Vx0,(y=92[0]==0}; With[{DiffEqnSolution=NDSolve[DiffEquations, {x,y}, {t,0,t2}]}, ProjectilePosition[t_Real]={x[t],y[t]}/.DiffEqnSolution; ProjectilePath=ParametricPlot[ ProjectilePosition[t], {t,0,t2}, PerformanceGoal->"Quality"]; ProjectileCrashed=MemberQ[ ProjectilePath, {_,_}?(Norm[#]<1&), {6} ]; If[ProjectileCrashed, ProjectilePath=ProjectilePath/.Line[pnts_]:>Line[ TakeWhile[ pnts, (1<Norm[#]&) ]]; CrashSite=Cases[ ProjectilePath,Line[pnts_]:>Last[pnts],-1]; Projectile=Graphics[{Red, PointSize[0.02], Point[CrashSite] }], (* else *) Projectile=Graphics[{Red, PointSize[0.02], Point[ProjectilePosition[t2]] }] ]; Earth=Graphics[{Gray,Disk[{0,0},1]}]; Show[ Earth, ProjectilePath, Projectile, PlotRange->4, Axes->False] ] ], {{t2, 2.9, "t"}, 0.01, 7.75}, {{y0, 1.4, "Subscript[y, 0]"}, 1.1, 3.97}, {{Vx0, 6.2, "Subscript[v, Subscript[x, 0]]"}, 1, 6.75} ] (*-------------------------------------------------------------------------- ------------------------------------*) (*------How do we modify the code above to correctly model traveling around the Earth? ----*) When I tried to do it NDSolve complained that the equations were probably stiff, and would not work it out automatically. Note: G = 6.672*^-11 (Newton (m/kg)^2) EarthMass = 5.9721986=D710^24 kg EarthRadius = 6378.14 km F = G*EarthMass*ProjectileMass*(DistanceFromEarthCenter)^-2 Please indicate the units used for (t2, y0, Vx0) Note: EarthRadius above is the actual equatorial radius of the earth. For simplicity we can model the earth as a Sphere with(radius) = (actual equatorial radius). I will ignore all complications such as wind resistance, variations in density of the earth, etc. Thanks, Ted Ersek