Re: FindInstance does not abort with TimeConstrained
- To: mathgroup at smc.vnet.net
- Subject: [mg115458] Re: FindInstance does not abort with TimeConstrained
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Tue, 11 Jan 2011 19:21:22 -0500 (EST)
leongz wrote: > I am trying to find a solution to a set of three equations in three > variables using FindInstance. Since I would like the computation to > abort when it is taking too long, I wrapped it in TimeConstrained. > However, the computation fails to abort, and even pressing Alt-. does > not help. Appreciate any help. Thanks. > > My code is as follows, on Mathematica 8. > > eqnA = -0.41593500000000005*(1 - t)*(1 - u)*(1 - v) - > 0.5155109999999999*t*(1 - u)*(1 - v) - 0.415706*(1 - t)*u*(1 - v) - > 0.5152300000000001*t*u*(1 - v) + > 0.20544400000000002*(1 - t)*(1 - u)*v + > 0.30929599999999996*t*(1 - u)*v + 0.20519199999999999*(1 - t)*u*v + > 0.30898500000000007*t*u*v > eqnB = -0.08238600000000001*(1 - t)*(1 - u)*(1 - v) + > 0.11608500000000001*t*(1 - u)*(1 - v) - > 0.082311*(1 - t)*u*(1 - v) + 0.116053*t*u*(1 - v) + > 0.15861400000000003*(1 - t)*(1 - u)*v + > 0.5001389999999999*t*(1 - u)*v + 0.15848999999999996*(1 - t)*u*v + > 0.49979000000000007*t*u*v > eqnC = 0.12412599999999999*(1 - t)*(1 - u)*(1 - v) + > 0.160255*t*(1 - u)*(1 - v) + 0.043126*(1 - t)*u*(1 - v) + > 0.097819*t*u*(1 - v) + 0.404011*(1 - t)*(1 - u)*v + > 0.5547869999999999*t*(1 - u)*v + 0.308304*(1 - t)*u*v + > 0.47778400000000004*t*u*v > > eqnA = Chop[FullSimplify[eqnA], 0.0001] > eqnB = Chop[FullSimplify[eqnB], 0.0001] > eqnC = Chop[FullSimplify[eqnC], 0.0001] > > TimeConstrained[ > FindInstance[{eqnA == 0, eqnB == 0, eqnC == 0, 0 <= t <= 1, > 0 <= u <= 1, 0 <= v <= 1}, {t, u, v}, Reals] > , 1] I cannot say why it fails to abort (might be a bug). You could use FindMinimum or NMinimize instead, if all you require is a high probability that no such root exists. In[11]:= FindMinimum[{eqnA^2 + eqnB^2 + eqnC^2, 0 <= t <= 1, 0 <= u <= 1, 0 <= v <= 1}, t, u, v] Out[11]= {0.0432204, {t -> 4.7235*10^-7, u -> 0.999999, v -> 0.518692}} In[13]:= NMinimize[{eqnA^2 + eqnB^2 + eqnC^2, 0 <= t <= 1, 0 <= u <= 1, 0 <= v <= 1}, {t, u, v}] Out[13]= {0.0432204, {t -> 0., u -> 1., v -> 0.518695}} An Interval computation proves there is no such root. In[17]:= eqnA^2 + eqnB^2 + eqnC^2 /. {t -> Interval[{0, 1}], u -> Interval[{0, 1}], v -> Interval[{0, 1}]} Out[17]= Interval[{0.00080764, 0.845157}] Daniel Lichtblau Wolfram Research