Re: Inverse function
- To: mathgroup at smc.vnet.net
- Subject: [mg115564] Re: Inverse function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 15 Jan 2011 04:42:49 -0500 (EST)
Do the same Reduce[y == x^x, x] C[1] \[Element] Integers && y != 0 && x != 0 && ((2 I \[Pi] C[1] + Log[y] != 0 && ((Im[ProductLog[-1, 2 I \[Pi] C[1] + Log[y]]] > -\[Pi] && x == E^ProductLog[-1, 2 I \[Pi] C[1] + Log[y]]) || x == E^ProductLog[ 2 I \[Pi] C[1] + Log[y]] || (Im[ ProductLog[1, 2 I \[Pi] C[1] + Log[y]]] <= \[Pi] && x == E^ProductLog[1, 2 I \[Pi] C[1] + Log[y]]))) || (y == 1 && x == 1)) Simplify[Reduce[{y == x^x, x > 0}, x, Reals], x > 0] (y == 1 && x == 1) || (Inequality[E^(-E^(-1)), LessEqual, y, Less, 1] && (E^ProductLog[Log[y]] == x || E^ProductLog[-1, Log[y]] == x)) || (y > 1 && E^ProductLog[Log[y]] == x) If an inverse does not exist, then use numeric techniques. f[y_?NumericQ] := x /. FindRoot[y == x^x, {x, 1}] Plot[f[y], {y, E^(-1/E), 2}] Bob Hanlon ---- "=D0=90=D1=80=D0=BD=D0=BE=D0=BB=D1=8C=D0=B4 =D0=91=D0=BE=D0=B3=D0=BE= =D0=BF=D0=BE=D0=BB=D1=8C=D1=81=D0=BA=D0=B8=D0=B9" <sender999ster at gmail.com> wrote: ========================== And how to be in a case y==x^x? Thanks. 2011/1/14 Bob Hanlon <hanlonr at cox.net> > Solve[y == x^2, x] > > {{x -> -Sqrt[y]}, {x -> Sqrt[y]}} > > Reduce[y == x^2, x] > > x == -Sqrt[y] || x == Sqrt[y] > > > Bob Hanlon > > ---- Arnold <sender999ster at gmail.com> wrote: > > ========================== > Function y=x^2 is given. Give, please, a code in WM-7 with which help it is > possible to receive function, return the given. That is, x=g (y). > Thanks. >