MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

Using FindRoot on an equation involving Log terms


I am trying to find the root of a certain expression in Mathematica
version 7:

expr = 110.52499999999998 + (300. - 135.52499999999998/(1 - x)) (1 -
x) - 300. x - 135.52499999999998 Log[1 - x] + 135.52499999999998

It appears to plot fine, for example using Plot[expr, {x, 0, 1}].  The
plot shows that there should be a root at about x=0.85.  However, when
I try to find this root, using for example the following:

FindRoot[expr, {x, 0.5}]

I get an error message:

"FindRoot::lstol: The line search decreased the step size to within
tolerance specified by AccuracyGoal and PrecisionGoal but was unable
to find a sufficient decrease in the merit function.  You may need
more than MachinePrecision digits of working precision to meet these

and it prints a seemingly incorrect (according to the qualitative form
of the plot) result: {x -> 0.344678}.  Only if I use for example

FindRoot[expr, {x, 0.7}]

do I get the seemingly "correct" root: {x -> 0.849823}.

Can you help me see why the FindRoot is getting stuck at {x ->
0.344678} when I use starting values far away from 0.7 or 0.8?  I will
ultimately want to find the roots of many similar functions, which may
have more than one "actual" root, so it would be helpful if I could
see why FindRoot[expr, {x, 0.5}] does not give {x -> 0.849823}.  (also
when I tried NSolve[expr==0,x], Mathematica will not solve it.)

Thank you,

Andrew DeYoung
Carnegie Mellon University

  • Prev by Date: Re: question about CUDA
  • Next by Date: Problems Exporting to PDF
  • Previous by thread: Re: moving equations between Mathematica and TeXShop
  • Next by thread: Re: Using FindRoot on an equation involving Log terms