Re: Do I need MathLink to run finite-difference fast enough for Manipulate?
- To: mathgroup at smc.vnet.net
- Subject: [mg115798] Re: Do I need MathLink to run finite-difference fast enough for Manipulate?
- From: Oliver Ruebenkoenig <ruebenko at wolfram.com>
- Date: Fri, 21 Jan 2011 04:30:31 -0500 (EST)
Hello James, On Wed, 19 Jan 2011, James wrote: > Hello guys, > > I would like to create a Manipulate for a finite-difference on a system > of PDEs using a 100x100 array that is processed about 10,000 times. Is > it possible to code this in native Mathematica, for example using > Compile, fast enough to be reasonably used by Manipulate (under 3 or 4 > seconds)? The C++ code is below and with the Compiler set to optimize > speed, it runs in approximately 1.5 seconds. However, if I attempt to > just code it in Mathematica using arrays, it takes much too long to > execute. > > Can someone help me decide if the only reasonable option is to use > MathLink or can I even use MathLink in a Manipulate? > > Thanks Guys. Here's the C++ code. The variables u, v, and lap > are all 100x100 arrays. > I think you have several options: 1) Consider using NDSolve for this. This has several advantages. Better control of the time step size - dt = fixNum is somewhat crude. Also, NDSolve can terminated once convergence has been reached, you can control accuracy. 2) Seen that you have a C++ code you could use link technology to just link that code into M-. My guess is that this is quite efficient. 3) You can code this in Mathematica. You could translate the for loops in, say, Do[] loops and put that into the compiler. Let me show you another approach. Prelude: ------- n = 5; data = Array[m, {n, n}]; data {{m[1, 1], m[1, 2], m[1, 3], m[1, 4], m[1, 5]}, {m[2, 1], m[2, 2], m[2, 3], m[2, 4], m[2, 5]}, {m[3, 1], m[3, 2], m[3, 3], m[3, 4], m[3, 5]}, {m[4, 1], m[4, 2], m[4, 3], m[4, 4], m[4, 5]}, {m[5, 1], m[5, 2], m[5, 3], m[5, 4], m[5, 5]}} commands like RotateLeft[data, 1] {{m[2, 1], m[2, 2], m[2, 3], m[2, 4], m[2, 5]}, {m[3, 1], m[3, 2], m[3, 3], m[3, 4], m[3, 5]}, {m[4, 1], m[4, 2], m[4, 3], m[4, 4], m[4, 5]}, {m[5, 1], m[5, 2], m[5, 3], m[5, 4], m[5, 5]}, {m[1, 1], m[1, 2], m[1, 3], m[1, 4], m[1, 5]}} shit columns and rows. Your stencil could then be res = -4*data + RotateLeft[data, 1] + RotateRight[data, 1] + RotateLeft[data, {0, 1}] + RotateRight[data, {0, 1}]; Appetizer: - ListCorrelate ---------- n = 100; u0 = RandomReal[1, {n, n}]; v0 = RandomReal[1, {n, n}]; dt = 10^-6.; a = 0.1; b = 0.1; du = 1/(n - 1); dv = 1/(n - 1); kern = {{0, 1, 0}, {1, -4, 1}, {0, 1, 0}}; u = u0; v = v0; AbsoluteTiming[ Do[ lap = RotateLeft[ListCorrelate[kern, u, {-1, -1}], {1, 1}]; u = u + dt*(du*lap + (a - (b + 1)*u + v*u*u)); lap = RotateLeft[ListCorrelate[kern, v, {-1, -1}], {1, 1}]; v = v + dt*(dv*lap + (b*u - v*u*u)); , {10000} ]] Please check that this is indeed what you coded. This runs in about 30 sec. on my laptop. Main Course: - Compile ----------- cf = Compile[{{uIn, _Real, 2}, {vIn, _Real, 2}}, Block[{u = uIn, v = vIn, lap, dt = 10^-6., a = 0.1, b = 0.1, du, dv, n, kern = {{0, 1, 0}, {1, -4, 1}, {0, 1, 0}} }, n = Length[uIn]; du = 1/(n - 1); dv = 1/(n - 1); Do[ lap = RotateLeft[ListCorrelate[kern, u, {-1, -1}], {1, 1}]; u = u + dt*(du*lap + (a - (b + 1)*u + v*u*u)); lap = RotateLeft[ListCorrelate[kern, u, {-1, -1}], {1, 1}]; v = v + dt*(dv*lap + (b*u - v*u*u)); , {10000} ] ], CompilationTarget -> "C", RuntimeOptions -> "Speed" ]; AbsoluteTiming[ cf[u0, v0]; ] gets it down to ca. 15 secs. Desert - Optimization ------ This Needs["CompiledFunctionTools`"] and Clear[u, v] CompilePrint[cf] You will find that there are two calls to main eval, coming from the call to ListCorrelate - Let's get rid of them. cf2 = Compile[{{uIn, _Real, 2}, {vIn, _Real, 2}}, Block[{u = uIn, v = vIn, lap, dt = 10^-6., a = 0.1, b = 0.1, du, dv, n, kern = {{0, 1, 0}, {1, -4, 1}, {0, 1, 0}} }, n = Length[uIn]; du = 1/(n - 1); dv = 1/(n - 1); Do[ lap = -4*u + RotateLeft[u, 1] + RotateRight[u, 1] + RotateLeft[u, {0, 1}] + RotateRight[u, {0, 1}]; u = u + dt*(du*lap + (a - (b + 1)*u + v*u*u)); lap = -4*v + RotateLeft[v, 1] + RotateRight[v, 1] + RotateLeft[v, {0, 1}] + RotateRight[v, {0, 1}]; v = v + dt*(dv*lap + (b*u - v*u*u)); , {10000} ] ], CompilationTarget -> "C", RuntimeOptions -> "Speed" ]; CompilePrint[cf2] looks good. AbsoluteTiming[ cf2[u0, v0]; ] gets it down to about 6 sec. I do not know what hardware you have so we can not directly compare the timings. I hope this help, Oliver ah, to get the result back you need to add ]; (* end Do loop *) {u, v} ], > startt=clock(); > > for(p=1;p<=10000;p++){ > > > lap[0][0]=(u[0][1]-4*u[0][0]+u[0][M-1]+u[1][0]+u[N-1][0]); > > for(j=1;j<=M-2;j++) > { > lap[0][j]=(u[0][j+1]-4*u[0][j]+u[0][j-1]+u[1][j]+u[N-1][j]); > } > > lap[0][M-1]=(u[0][0]-4*u[0][M-1]+u[0][M-2]+u[1][M-1]+u[N-1][M-1]); > > for(i=1;i<=N-2;i++) > { > lap[i][0]=(u[i][1]-4*u[i][0]+u[i][M-1]+u[i+1][0]+u[i-1][0]); > } > > for(i=1;i<=N-2;i++) > { > > lap[i][M-1]=(u[i][0]-4*u[i][M-1]+u[i][M-2]+u[i+1][M-1]+u[i-1][M-1]); > } > > lap[N-1][0]=(u[N-1][1]-4*u[N-1][0]+u[N-1][M-1]+u[0][0]+u[N-2][0]); > > > lap[N-1][M-1]=(u[N-1][0]-4*u[N-1][M-1]+u[N-1][M-2]+u[0][M-1]+u[N-2][M-1]); > > for(j=1;j<=M-2;j++) > { > > lap[N-1][j]=(u[N-1][j+1]-4*u[N-1][j]+u[N-1][j-1]+u[0][j]+u[N-2][j]); > } > > for(i=1;i<=N-2;i++) > for(j=1;j<=M-2;j++) > { > lap[i][j]=(u[i][j+1]-4*u[i][j]+u[i][j-1]+u[i+1][j]+u[i-1][j]); > } > > for(i=0;i<M;i++) > for(j=0;j<N;j++){ > > u[i][j] = > =u[i][j]+dt*(D_u*lap[i][j]+(a-(b+1)*u[i][j]+v[i][j]*u[i][j]*u[i][j])); > > } > > > lap[0][0]=(v[0][1]-4*v[0][0]+v[0][M-1]+v[1][0]+v[N-1][0]); > > for(j=1;j<=M-2;j++) > { > lap[0][j]=(v[0][j+1]-4*v[0][j]+v[0][j-1]+v[1][j]+v[N-1][j]); > } > > lap[0][M-1]=(v[0][0]-4*v[0][M-1]+v[0][M-2]+v[1][M-1]+v[N-1][M-1]); > > for(i=1;i<=N-2;i++) > { > lap[i][0]=(v[i][1]-4*v[i][0]+v[i][M-1]+v[i+1][0]+v[i-1][0]); > } > > for(i=1;i<=N-2;i++) > { > > lap[i][M-1]=(v[i][0]-4*v[i][M-1]+v[i][M-2]+v[i+1][M-1]+v[i-1][M-1]); > } > > lap[N-1][0]=(v[N-1][1]-4*v[N-1][0]+v[N-1][M-1]+v[0][0]+v[N-2][0]); > > > lap[N-1][M-1]=(v[N-1][0]-4*v[N-1][M-1]+v[N-1][M-2]+v[0][M-1]+v[N-2][M-1]); > > for(j=1;j<=M-2;j++) > { > > lap[N-1][j]=(v[N-1][j+1]-4*v[N-1][j]+v[N-1][j-1]+v[0][j]+v[N-2][j]); > } > > for(i=2;i<=N-2;i++) > for(j=2;j<=M-2;j++) > { > lap[i][j]=(v[i][j+1]-4*v[i][j]+v[i][j-1]+v[i+1][j]+v[i-1][j]); > } > > for(i=0;i<M;i++) > for(j=0;j<N;j++){ > v[i][j] = > =v[i][j]+dt*(D_v*lap[i][j]+(b*u[i][j]-v[i][j]*u[i][j]*u[i][j])); > } > > endt=clock(); > > fprintf(stderr,"%d\n",endt-startt); > >