Re: Recursive function
- To: mathgroup at smc.vnet.net
- Subject: [mg115926] Re: Recursive function
- From: Dana DeLouis <dana.del at gmail.com>
- Date: Wed, 26 Jan 2011 05:04:49 -0500 (EST)
On Jan 25, 4:20 am, StatsMath <stats.ma... at gmail.com> wrote: > I am trying to compute the following function: > > x[t] = a * x[t-1] + b * x[t-2] > x[0] = 1 > x[1] = 1 > > For different values of a & b. > > Would like to use Manipulate[] so that I can change the values of a & > b dynamically and observe what the resulting x[t] values are. > > So wrote the following piece of code: > > Clear["Global`*"] > x[t_Integer] := x[t] = a x[t - 1] + b x[t - 2] > x[0] = 1; > x[1] = 1; > Manipulate[Map[x[#] &, Range[0, 3]], {a, -1, 1, 0.5}, {b, -1, 1, .5}] > > Got the following results: > {1, 1, a + b, b + a (a + b)} > > The a & b values are not being propagated so tried the following: > > Clear["Global`*"] > x[t_Integer] := x[t] = a x[t - 1] + b x[t - 2] /; t > 2 > x[0] = 1; > x[1] = 1; > Manipulate[ > Map[(If[# == 0 || # == 1, 1, a x[# - 1] + b x[# - 2]]) &, > Range[0, 3]], {a, -1, 1, 0.5}, {b, -1, 1, .5}] > > Got the following result: > {1, 1, -2, -1 - a - b} > > Finally got it working with the following code: > > Clear["Global`*"] > Manipulate[ > Map[(If[# == 0 || # == 1, x[#] = 1, > x[#] = a x[# - 1] + b x[# - 2]]) &, Range[0, 20]], {a, -1, 1, > 0.5}, {b, -1, 1, .5}] > > The above code looks ugly, so wondering if there is a different way to > handle recursive functions. Hi. Here's something a little different. Here's what we are given: x[t_,a_,b_]:=a*x[t-1,a,b]+b*x[t-2,a,b]; x[0,a_,b_]=1; x[1,a_,b_]=1; equ=Table[x[j,a,b],{j,0,5}] {1,1,a+b,b+a (a+b),b (a+b)+a (b+a (a+b)),b (b+a (a+b))+a (b (a+b)+a (b+a (a+b)))} gf=FindGeneratingFunction[equ,x]//FullSimplify ((a-1) x-1)/(x (a+b x)-1) I included 'n, for the size of the output: Manipulate[CoefficientList[ Series[((a-1) x-1)/(x (a+b x)-1),{x,0,n}],x],{n,0,20,1},{a,-1,1,1/2},{b,-1,1,1/2}] = = = = = = = = = = HTH : >) Dana DeLouis