Re: Help with While Loop Function
- To: mathgroup at smc.vnet.net
- Subject: [mg116035] Re: Help with While Loop Function
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Sat, 29 Jan 2011 19:42:38 -0500 (EST)
Peter, That is sheer GENIUS for y = 3, but it doesn't work for any other y that I've tried. First, here's a simplification of my earlier code: limit = 100000000000; k = 2; y = 3; expr = y^2 + t/4 (-1 + y^2)^2 Timing[list = {0, 1}~Join~ First@Last@Reap@ While[(t = k (k + 1)/2) < limit, IntegerQ@Sqrt[expr] && Sow[t]; k++ ] ] 9 + 16 t {70.1258, {0, 1, 10, 45, 351, 1540, 11935, 52326, 405450, 1777555, 13773376, 60384555, 467889345, 2051297326, 15894464365, 69683724540}} Collect[FindSequenceFunction[list, n] // RootReduce, _^n, Simplify] -(11/32) + 1/64 (-3 - 2 Sqrt[2])^n (1 - Sqrt[2]) + 5/64 (3 - 2 Sqrt[2])^n (2 + Sqrt[2]) + 1/64 (1 + Sqrt[2]) (-3 + 2 Sqrt[2])^n - 5/64 (-2 + Sqrt[2]) (3 + 2 Sqrt[2])^n But now, if we change y to 5: limit = 10000000000; k = 2; y = 5; expr = y^2 + t/4 (-1 + y^2)^2 Timing[list = {0, 1}~Join~ First@Last@Reap@ While[(t = k (k + 1)/2) < limit, IntegerQ@Sqrt[expr] && Sow[t]; k++ ] ] 25 + 144 t {24.5298, {0, 1, 171, 1326, 197506, 1530375, 227921925, 1766051596}} Collect[FindSequenceFunction[list, n] // RootReduce, _^n, Simplify] FindSequenceFunction[{0, 1, 171, 1326, 197506, 1530375, 227921925, 1766051596}, n] or y = 2: limit = 10000000000; k = 2; y = 2; expr = y^2 + t/4 (-1 + y^2)^2 Timing[list = {0, 1}~Join~ First@Last@Reap@ While[(t = k (k + 1)/2) < limit, IntegerQ@Sqrt[expr] && Sow[t]; k++ ] ] 4 + (9 t)/4 {16.2608, {0, 1, 276, 820, 319600, 947376, 368819220, 1093272180}} Collect[FindSequenceFunction[list, n] // RootReduce, _^n, Simplify] FindSequenceFunction[{0, 1, 276, 820, 319600, 947376, 368819220, 1093272180}, n] I'm working on generalizing your trick with Reduce for other y. I'm not clear on that, just yet. Bobby On Thu, 27 Jan 2011 02:42:01 -0600, Peter Pein <petsie at dordos.net> wrote: > On 26.01.2011 11:04, KenR wrote: >> Please Help me to Get the following to work as desired >> t is the triangular number. I increment it repeated ly by adding the >> counter x to it. When t*((y^2+1)/2)^2 + y^2 is a perfect square i want >> to append t to my list of trangular numbers with the list starting >> with {0,1}, and exit the loop when 3 more triangular numbers have been >> added or when t>= 1000000000000. It is not working for me. I am new >> to Mathematica. Thanks >> >> Clearall[x,y,t,w] >> x = 2 >> y = 3 >> t = 1 >> w = 0 >> List1 = {0,1} >> f[t_,y_] ==(Floor(Sqrt ((t/4) (y^2-1)^2 + y^2)))^2 - ((t/4) (y^2-1)^2 >> + y^2) > f[t_,y_] = Floor[Sqrt[(t/4) (y^2-1)^2 + y^2]]^2 - ((t/4) (y^2-1)^2 + y^2) >> While[t<1000000000000,t = t+x;If[f[t,y] = 0, List1 = Append[list1,t];w >> = w +1]; > ... , AppendTo[List1,t]; w++ ... >> If [w = 3,t = 1000000000000, x++]]; > .. w== 3 .. >> List1 >> > > If I didn't miss anything, you want the Sophie Germain triangular > numbers (http://oeis.org/A124174). This is a problem for which Reduce > has been made: > > In[1]:= t /. {ToRules@ > Reduce[t == n (n + 1)/2 && 2 t + 1 == m (m + 1)/2 && > Element[{m, n, t}, Integers] && 0 <= t <= 10^12 && 0 <= n && > 0 <= m, t, Backsubstitution -> True]} > > Out[1]= {0, 1, 10, 45, 351, 1540, 11935, 52326, 405450, 1777555, > 13773376, 60384555, 467889345, 2051297326, 15894464365, 69683724540, > 539943899076} > > In[2]:= SophieGermain[n_] = Collect[FindSequenceFunction[%, n] // > RootReduce, _^n, Simplify] > > Out[2]= -(11/32) + 1/64 (-3 - 2 Sqrt[2])^n (1 - Sqrt[2]) + > 5/64 (3 - 2 Sqrt[2])^n (2 + Sqrt[2]) + > 1/64 (1 + Sqrt[2]) (-3 + 2 Sqrt[2])^n - > 5/64 (-2 + Sqrt[2]) (3 + 2 Sqrt[2])^n > > hth, > Peter > > -- DrMajorBob at yahoo.com