Re: sequence of functions
- To: mathgroup at smc.vnet.net
- Subject: [mg120135] Re: sequence of functions
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Sat, 9 Jul 2011 07:33:10 -0400 (EDT)
- References: <iv6hbv$sau$1@smc.vnet.net>
I would attack the problem using an auxiliary function g to avoid a recurrence loop defined as g[n_, x_] := f[n - 1, 2x] + f[n - 1, 2x - 1] Now we can calculate the first, say 5, iterations thus Table[f[k, x_] = g[k, x], {k, 1, 5}] /. f[0, x_] -> x(1 - x) // Expand //InputForm {-2 + 8*x - 8*x^2, -20 + 64*x - 64*x^2, -168 + 512*x - 512*x^2, -1360 + 4096*x - 4096*x^2, -10912 + 32768*x - 32768*x^2} I hope this helps Regards, Wolfgang "rych" <rychphd at gmail.com> schrieb im Newsbeitrag news:iv6hbv$sau$1 at smc.vnet.net... >I would like to build a function sequence inductively, for example > f[n][x]=f[n-1][2x]+f[n-1][2x-1], f[0][x] = x(1-x) > > This is what I tried in Mathematica, > > ClearAll["Global`*"] > f[n_] = Function[x, Simplify[f[n - 1][2 x] + f[n - 1][2 x - 1]]]; > f[0] = Function[x, x (1 - x)]; > > f[2][x] > Out: > -20 + 64 x - 64 x^2 > > ?f > Out: > Global`f > f[0]=Function[x,x (1-x)] > f[n_]=Function[x,Simplify[f[n-1][2 x]+f[n-1][2 x-1]]] > > My questions: it doesn't seem to cache the previous f[n-1] etc? If I > do it this way instead, > f[n_] := f[n] = Function[... > > Then it does cache the f[n-1] etc. but still in the unevaluated form, > Global`f > f[0]=Function[x,x (1-x)] > f[1]=Function[x$,Simplify[f[1-1][2 x$]+f[1-1][2 x$-1]]] > f[2]=Function[x$,Simplify[f[2-1][2 x$]+f[2-1][2 x$-1]]] > f[n_]:=f[n]=Function[x,Simplify[f[n-1][2 x]+f[n-1][2 x-1]]] > > How do I force the reduction so that I see f[1] = -2 (1 - 2 x)^2, > etc. > in the definitions? > > Thanks, > Igor > >