MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: " for z>0

You can use ComplexExpand[...], But is this what you are looking for ?

In[17]:= Simplify[Conjugate[Sqrt[-(t Cos[2 kx] Cos[ky])+Cos[kx]+M]],-(t
Cos[2 kx] Cos[ky])+Cos[kx]+M>0]//ComplexExpand

Out[17]= ((M+Cos[kx]-t Cos[2 kx] Cos[ky])^2)^(1/4) Cos[1/2 Arg[M+Cos[kx]-t
Cos[2 kx] Cos[ky]]]-I ((M+Cos[kx]-t Cos[2 kx] Cos[ky])^2)^(1/4) Sin[1/2
Arg[M+Cos[kx]-t Cos[2 kx] Cos[ky]]]

Vivek J. Joshi

On Thu, Jun 16, 2011 at 4:00 AM, liblenovo <liblenovo at> wrote:

> In[86]:=Simplify[Conjugate[Sqrt[-(t Cos[2 kx] Cos[ky]) + Cos[kx] +
> M] ], -(t Cos[2 kx] Cos[ky]) + Cos[kx] + M > 0]
> Out[86]= Sqrt[-t cos(2 kx) cos(ky)+cos(kx)+M]^\[Conjugate]
> I don't want that  ^\[Conjugate], why it is there?

  • Prev by Date: Re: Partition a list based on columns
  • Next by Date: A problem with Maximize/Minimize
  • Previous by thread: Simplify expression like " Conjugate[Sqrt[z]] " for z>0
  • Next by thread: [Mathematica8,solve] saddlepoint approx, solving a sum