MathGroup Archive 2011

[Date Index] [Thread Index] [Author Index]

Search the Archive

general differentiation formula for spherical bessel function

  • To: mathgroup at smc.vnet.net
  • Subject: [mg116817] general differentiation formula for spherical bessel function
  • From: raj <pianoman2008sg at yahoo.com>
  • Date: Tue, 1 Mar 2011 05:22:49 -0500 (EST)

D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 1}] // 
 
hi there!,
i am trying to obtain a general formula for differentiating a spherical bessel function of the form SphericalBesselJ[L, kr] m times with respect to k

D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 1}] // 
  FullSimplify // Apart=
 (L SphericalBesselJ[L, k Subscript[r, 2]])/k - 
 SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2]

D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 2}] // 
  FullSimplify // Apart =
((-1 + L) L SphericalBesselJ[L, k Subscript[r, 2]])/k^2 + (
 2 SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2])/k - 
 SphericalBesselJ[L, k Subscript[r, 2]] \!
\*SubsuperscriptBox[\(r\), \(2\), \(2\)]
and so on.
is there a general formula in terms of SphericalBesselJ[L, kr]?


  • Prev by Date: Bug in Mathematica 8 vs Mathematica 7: SeriesData
  • Next by Date: Re: Automatically resizing graphs for printing
  • Previous by thread: Re: Bug in Mathematica 8 vs Mathematica 7: SeriesData
  • Next by thread: Re: Automatically resizing graphs for printing