general differentiation formula for spherical bessel function
- To: mathgroup at smc.vnet.net
- Subject: [mg116817] general differentiation formula for spherical bessel function
- From: raj <pianoman2008sg at yahoo.com>
- Date: Tue, 1 Mar 2011 05:22:49 -0500 (EST)
D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 1}] // hi there!, i am trying to obtain a general formula for differentiating a spherical bessel function of the form SphericalBesselJ[L, kr] m times with respect to k D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 1}] // FullSimplify // Apart= (L SphericalBesselJ[L, k Subscript[r, 2]])/k - SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2] D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 2}] // FullSimplify // Apart = ((-1 + L) L SphericalBesselJ[L, k Subscript[r, 2]])/k^2 + ( 2 SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2])/k - SphericalBesselJ[L, k Subscript[r, 2]] \! \*SubsuperscriptBox[\(r\), \(2\), \(2\)] and so on. is there a general formula in terms of SphericalBesselJ[L, kr]?