Re: Contour line colors from z coord of a 3D plot
- To: mathgroup at smc.vnet.net
- Subject: [mg117191] Re: Contour line colors from z coord of a 3D plot
- From: recmath <recmath99 at gmail.com>
- Date: Thu, 10 Mar 2011 16:05:07 -0500 (EST)
- References: <iladhj$2ka$1@smc.vnet.net>
On Mar 10, 6:43 am, Bob Hanlon <hanl... at cox.net> wrote: > Module[{f, ch = Purple, cl = Yellow}, > f[x_, y_] := Log[x + I y]; > logre = Show[ > Plot3D[Re[f[x, y]], > {x, -2.4, 2.4}, {y, -2, 2}, > PlotStyle -> Opacity[0.7], > PlotRange -> {-3, 1.5}, > ColorFunction -> > (Blend[{cl, ch}, #3] &), > MeshStyle -> Darker[Gray]], > Graphics3D[ > ContourPlot[Re[f[x, y]], > {x, -2.4, 2.4}, {y, -2, 2}, > Axes -> False, > Contours -> Table[z, {z, -1, 1, .25}], > ContourShading -> None, > ContourStyle -> > Table[ > Blend[{cl, ch}, (z + 1)/2], > {z, -1, 1, .25}]][[1]] /. > {x_Real, y_Real} -> {x, > y, -3}], > ViewPoint -> {2.2, -4, 1.3}, > ImageSize -> 400]] > > Bob Hanlon > > ---- recmath <recmat... at gmail.com> wrote: > > ============= > Hi there, > > I'm trying to reproduce this very cool figure:http://en.wikipedia.org/wik= i/File:NaturalLogarithmRe.png > > Problem: I can't get the contour lines color-matched to the 3D > surface, which is colored according to it's height. My code is below, > can anyone help? > > Module[{f}, f[x_, y_] := Log[x + I y]; > > logre = Show[Plot3D[Re[f[x, y]], {x, -2.4, 2.4}, {y, -2, 2}, > PlotStyle -> Opacity[0.7], Axes -> True, Boxed -> True, > PlotRange -> {Automatic, Automatic, {-3, 4}}, > ColorFunction -> (Blend[{Yellow, Purple}, #3] &)], > Graphics3D[ > ContourPlot[Re[f[x, y]], {x, -2.4, 2.4}, {y, -2, 2}, > Axes -> False, ContourShading -> None, > ContourStyle -> Purple][[ > 1]] /. {x : _Real, y : _Real} -> {x, y, -3}], > ViewPoint -> {2.2, -4, 1.3}, ImageSize -> 300 > ] > ] This produces a fantastic figure, thank you.