Re: three kinds of Euler angular unitary matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg117388] Re: three kinds of Euler angular unitary matrices
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Thu, 17 Mar 2011 06:30:29 -0500 (EST)
- References: <ilq740$bqb$1@smc.vnet.net>
Another approach from physics is the Wolfenstein parametrization which is also in the above link. (* normalizing the web CKM (3, 3) to one*) ckm = {{0.9751068906432654`, 0.22549121655163576`, 0.0034729450574086823`}, {0.22539113167966435`, 0.9742761862059026`, 0.04103479750828703`}, {0.008627315963937418`, 0.040334203404487005`, 1.`}} (* Wolfenstein Parametrization of CKM matrix*) m = {{1 - l^2/2, l, A*l^3(r - I*n)}, {-l, 1 - l^2/2, A*l^2}, {A*l^3(1 - r - I*n), A*l^2, 1}} (* solving for those parameters*) l = Sqrt[0.22549121655163576*0.22539113167966435] A = 0.04103479750828703/0.05082372048239745 {n, r} /. Solve[{0.009250932701954831 (-I* n + r) - 0.0034729450574086823 == 0, 0.009250932701954831* (1 - I* n - r) - 0.008627315963937418 == 0}, {n, r}] The solution angles are: a0=ArcSin[l] 0.227396 b0=ArcSin[A*l^2] 0.0410463 c0=ArcSin[A*l^3(r-I*n)] 0.00347295 Det[ckm-m]=1.3697829821437137`*^-22