Re: how do I solve for this
- To: mathgroup at smc.vnet.net
- Subject: [mg117629] Re: how do I solve for this
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Tue, 29 Mar 2011 06:49:53 -0500 (EST)
Sure, no problem, other than there being 3 rather complicated branches of v: D[v /. Solve[p == n*kb*t/(v - n*b) - a*n^2/v^2, v], t] {(kb n)/(3 p) + (2^( 1/3) (3 a n^2 p - (-b n p - kb n t)^2) (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))))/(9 p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^( 4/3)) + (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3)))/(9 2^(1/3) p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(2/3)) - (2 2^(1/3) kb n (-b n p - kb n t))/(3 p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(1/3)), (kb n)/( 3 p) - ((1 + I Sqrt[3]) (3 a n^2 p - (-b n p - kb n t)^2) (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))))/(9 2^(2/3) p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^( 4/3)) - ((1 - I Sqrt[3]) (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))))/(18 2^(1/3) p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(2/3)) + (2^( 1/3) (1 + I Sqrt[3]) kb n (-b n p - kb n t))/(3 p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(1/3)), (kb n)/( 3 p) - ((1 - I Sqrt[3]) (3 a n^2 p - (-b n p - kb n t)^2) (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))))/(9 2^(2/3) p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^( 4/3)) - ((1 + I Sqrt[3]) (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2 + (2 (-9 a kb n^3 p + 6 b^2 kb n^3 p^2 + 12 b kb^2 n^3 p t + 6 kb^3 n^3 t^2) (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3) + 24 kb n (-b n p - kb n t) (3 a n^2 p - (-b n p - kb n t)^2)^2)/(2 \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))))/(18 2^(1/3) p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(2/3)) + (2^( 1/3) (1 - I Sqrt[3]) kb n (-b n p - kb n t))/(3 p (18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3 + \[Sqrt]((18 a b n^3 p^2 + 2 b^3 n^3 p^3 - 9 a kb n^3 p t + 6 b^2 kb n^3 p^2 t + 6 b kb^2 n^3 p t^2 + 2 kb^3 n^3 t^3)^2 + 4 (3 a n^2 p - (-b n p - kb n t)^2)^3))^(1/3))} You might choose a nicer or more specific form using the following (if you have ranges for the constants): Reduce[p == n*kb*t/(v - n*b) - a*n^2/v^2, v] (p == 0 && n == 0 && t v != 0) || (p != 0 && (v == Root[-a b n^3 + a n^2 #1 + (-b n p - kb n t) #1^2 + p #1^3 &, 1] || v == Root[-a b n^3 + a n^2 #1 + (-b n p - kb n t) #1^2 + p #1^3 &, 2] || v == Root[-a b n^3 + a n^2 #1 + (-b n p - kb n t) #1^2 + p #1^3 &, 3]) && b n v - v^2 != 0) || (p == 0 && kb n t != 0 && (v == (a n - Sqrt[a] n Sqrt[a - 4 b kb t])/(2 kb t) || v == (a n + Sqrt[a] n Sqrt[a - 4 b kb t])/(2 kb t)) && a b n - a v + b kb t v != 0) || (t == 0 && p == 0 && n == 0 && v != 0) || (p == 0 && n t != 0 && kb == 0 && a == 0 && b n v - v^2 != 0) || (t == 0 && p == 0 && n != 0 && a == 0 && b n v - v^2 != 0) Bobby On Thu, 24 Mar 2011 06:31:55 -0500, thinktank1985 <dibya at umich.edu> wrote: > Say I have > > p=N*kb*T/(V-N*b)-a*N^2/V^2 > > I want to evaluate the derivative of V with respect to T, keeping > p,N,kb,b,a constant. > > I understand that this can be done by hand. I just want to know whether > this can be done by using mathematica. I couldnt understand how to use > Solve to do this. maybe there is something else I am not aware of > -- DrMajorBob at yahoo.com