Re: Simple DSolve equation
- To: mathgroup at smc.vnet.net
- Subject: [mg122631] Re: Simple DSolve equation
- From: Rui Rojo <rui.rojo at gmail.com>
- Date: Fri, 4 Nov 2011 05:59:09 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201111030846.DAA15245@smc.vnet.net>
What I want to somehow get is the most general result with restrictions over k. That is: {y''[x] == k y[x], y[0] == 0, y[10] == 0} /. { y -> (Sin[2 Pi p/20 #] &), k -> -(1/100) p^2 \[Pi]^2 } Out: {True, True, Sin[p \[Pi]] == 0} Simplify[%, p \[Element] Integers] {True, True, True} ...or any linear combination of those solutions. Typical 10m rope tied on the extremes 2011/11/3 Bob Hanlon <hanlonr357 at gmail.com> > soln = DSolve[{y''[x] == k y[x], y[0] == y0, y[10] == y10}, y[x], x][[1, > 1]] > > y[x] -> (E^(20*Sqrt[k])*y0 - E^(2*Sqrt[k]*x)*y0 - E^(10*Sqrt[k])*y10 + > E^(10*Sqrt[k] + 2*Sqrt[k]*x)* > y10)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k]))) > > soln /. y0 -> 0 // Simplify > > y[x] -> ((-1 + E^(2*Sqrt[k]*x))* > y10)/(E^(Sqrt[k]*(-10 + x))*(-1 + E^(20*Sqrt[k]))) > > soln /. y10 -> 0 // Simplify > > y[x] -> ((E^(20*Sqrt[k]) - E^(2*Sqrt[k]*x))* > y0)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k]))) > > soln /. {y0 -> 0, y10 -> 0} > > y[x] -> 0 > > What solution are you expecting? > > > Bob Hanlon > > > On Thu, Nov 3, 2011 at 4:46 AM, Rui <rui.rojo at gmail.com> wrote: > > Why does something like this not give the correct answer with > restrictions over k? > > How would you go about getting the right general solutions in these kind > of basic differential equations? > > > > Thanks > > > > DSolve[{y''[x] == k y[x], y[0] == 0, y[10] == 0}, y[x], x] > > Out={{y[x] -> 0}} > > >
- References:
- Simple DSolve equation
- From: Rui <rui.rojo@gmail.com>
- Simple DSolve equation