Re: Simple DSolve equation
- To: mathgroup at smc.vnet.net
- Subject: [mg122642] Re: Simple DSolve equation
- From: Rui Rojo <rui.rojo at gmail.com>
- Date: Fri, 4 Nov 2011 06:01:09 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201111030846.DAA15245@smc.vnet.net>
(not true what I just said about linear combinations being solutions) On Thu, Nov 3, 2011 at 11:02 AM, Rui Rojo <rui.rojo at gmail.com> wrote: > What I want to somehow get is the most general result with restrictions > over k. That is: > > {y''[x] == k y[x], y[0] == 0, y[10] == 0} /. { > y -> (Sin[2 Pi p/20 #] &), > k -> -(1/100) p^2 \[Pi]^2 } > Out: {True, True, Sin[p \[Pi]] == 0} > Simplify[%, p \[Element] Integers] > {True, True, True} > ...or any linear combination of those solutions. Typical 10m rope tied on > the extremes > > > 2011/11/3 Bob Hanlon <hanlonr357 at gmail.com> > >> soln = DSolve[{y''[x] == k y[x], y[0] == y0, y[10] == y10}, y[x], x][[1, >> 1]] >> >> y[x] -> (E^(20*Sqrt[k])*y0 - E^(2*Sqrt[k]*x)*y0 - E^(10*Sqrt[k])*y10 + >> E^(10*Sqrt[k] + 2*Sqrt[k]*x)* >> y10)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k]))) >> >> soln /. y0 -> 0 // Simplify >> >> y[x] -> ((-1 + E^(2*Sqrt[k]*x))* >> y10)/(E^(Sqrt[k]*(-10 + x))*(-1 + E^(20*Sqrt[k]))) >> >> soln /. y10 -> 0 // Simplify >> >> y[x] -> ((E^(20*Sqrt[k]) - E^(2*Sqrt[k]*x))* >> y0)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k]))) >> >> soln /. {y0 -> 0, y10 -> 0} >> >> y[x] -> 0 >> >> What solution are you expecting? >> >> >> Bob Hanlon >> >> >> On Thu, Nov 3, 2011 at 4:46 AM, Rui <rui.rojo at gmail.com> wrote: >> > Why does something like this not give the correct answer with >> restrictions over k? >> > How would you go about getting the right general solutions in these >> kind of basic differential equations? >> > >> > Thanks >> > >> > DSolve[{y''[x] == k y[x], y[0] == 0, y[10] == 0}, y[x], x] >> > Out={{y[x] -> 0}} >> > >> > > --00151773ea0a09be0304b0d9579e Content-Type: text/html; charset="ISO-8859-1" Content-Transfer-Encoding: quoted-printable X-Sun-Content-Length: 2461 (not true what I just said about linear combinations being solutions)<br><b= r><div class="gmail_quote">On Thu, Nov 3, 2011 at 11:02 AM, Rui Rojo <spa= n dir="ltr"><<a href="mailto:rui.rojo at gmail.com">rui.rojo at gmail.com<= /a>></span> wrote:<br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1p= x #ccc solid;padding-left:1ex;">What I want to somehow get is the most gene= ral result with restrictions over k. That is:<br><br>{y''[x] === k y[x], y[0] == 0, y[10] == 0} /. {<br> y -> (Sin[2 Pi p/20 #] &), <br> k -> -(1/100) p^2 \[= Pi]^2 }<br> Out: {True, True, Sin[p \[Pi]] == 0}<br>Simplify[%, p \[Element] Intege= rs]<br>{True, True, True}<br>...or any linear combination of those solution= s. Typical 10m rope tied on the extremes<div class="HOEnZb"><div class== "h5"> <br><br><div class="gmail_quote">2011/11/3 Bob Hanlon <span dir="ltr">&= lt;<a href="mailto:hanlonr357 at gmail.com" target="_blank">hanlonr357@gma= il.com</a>></span><br> <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1p= x #ccc solid;padding-left:1ex">soln = DSolve[{y''[x] == k y[x= ], y[0] == y0, y[10] == y10}, y[x], x][[1, 1]]<br> <br> y[x] -> (E^(20*Sqrt[k])*y0 - E^(2*Sqrt[k]*x)*y0 - E^(10*Sqrt[k])*y10 +<b= r> E^(10*Sqrt[k] + 2*Sqrt[k]*x)*<br> y10)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k])))<br> <br> soln /. y0 -> 0 // Simplify<br> <br> y[x] -> ((-1 + E^(2*Sqrt[k]*x))*<br> y10)/(E^(Sqrt[k]*(-10 + x))*(-1 + E^(20*Sqrt[k])))<br> <br> soln /. y10 -> 0 // Simplify<br> <br> y[x] -> ((E^(20*Sqrt[k]) - E^(2*Sqrt[k]*x))*<br> y0)/(E^(Sqrt[k]*x)*(-1 + E^(20*Sqrt[k])))<br> <br> soln /. {y0 -> 0, y10 -> 0}<br> <br> y[x] -> 0<br> <br> What solution are you expecting?<br> <br> <br> Bob Hanlon<br> <br> <br> On Thu, Nov 3, 2011 at 4:46 AM, Rui <<a href="mailto:rui.rojo at gmail.co= m" target="_blank">rui.rojo at gmail.com</a>> wrote:<br> > Why does something like this not give the correct answer with restrict= ions over k?<br> > How would you go about getting the right general solutions in these ki= nd of basic differential equations?<br> ><br> > Thanks<br> ><br> > DSolve[{y''[x] == k y[x], y[0] == 0, y[10] == 0}, = y[x], x]<br> > Out={{y[x] -> 0}}<br> ><br> </blockquote></div><br> </div></div></blockquote></div><br> --00151773ea0a09be0304b0d9579e--
- References:
- Simple DSolve equation
- From: Rui <rui.rojo@gmail.com>
- Simple DSolve equation