Re: How to eliminate noises?
- To: mathgroup at smc.vnet.net
- Subject: [mg122660] Re: How to eliminate noises?
- From: Dana DeLouis <dana01 at me.com>
- Date: Sat, 5 Nov 2011 04:45:38 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hi. Just to add to Richard's statement:
After the substitution into Horner's form, FullSimplify was able to bring the numbers down to below 15 digits.
Hense, an alternative might be:
h[n_] := Module[{k = n - 1/2, w},
w = k*k*k;
k*k(1296 w (1119744 w*w(12 w (648 w (96 w (216 w (162 w (40 w-3)+17)-77)+53)-115)+1)-1)+14)]
Plot[h[n], {n,.35,.53}]
<< Same nice Plot >>
= = = = = = = = = =
HTH
Dana DeLouis
= = = = = = = = = =
On Nov 2, 7:23 am, Artur <gra... at csl.pl> wrote:
> Plot[ (-1 + 2 n)^2 (-5077311495040 + 256771815840909 n -
> 6285087811295946 n^2 + 99108751736880828 n^3 -
> 1130572436430176064 n^4 + 9932051583279890496 n^5 -
> 69845429986320295296 n^6 + 403489321408322272512 n^7 -
> 1949815250878086761472 n^8 + 7985109816575584026624 n^9 -
> 27976513439837284724736 n^10 + 84423827219928959287296 n^11 -
> 220448430557212109488128 n^12 + 499528909151513065046016 n^13 -
> 983522463480512590086144 n^14 + 1682263859668487045185536 n^15 -
> 2495534893540205641334784 n^16 + 3200240859272788875411456 n^17 -
> 3529950418080000008257536 n^18 + 3325177849291516859645952 n^19 -
> 2648782194444972790382592 n^20 + 1760454182292395183308800 n^21 -
> 958285503480825479430144 n^22 + 416134125894081039040512 n^23 -
> 138626084433937223909376 n^24 + 33263436995017750609920 n^25 -
> 5117451845387346247680 n^26 + 379070507065729351680 n^27), {n,
> 0.35, 0.53}]