Re: How to eliminate noises?
- To: mathgroup at smc.vnet.net
- Subject: [mg122712] Re: How to eliminate noises?
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Mon, 7 Nov 2011 05:52:45 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201111021121.GAA03503@smc.vnet.net>
I used try and error. Bob Hanlon On Sun, Nov 6, 2011 at 7:46 PM, Barrie Stokes <Barrie.Stokes at newcastle.edu.au> wrote: > Hi Bob > > Values of WorkingPrecision of 20 and less give interesting plots in this case. Does one settle on 25 (22 or more seems to work here) by trial and error? (Which very often isn't hard in Mathematica.) > > Barrie > >>>> On 03/11/2011 at 7:49 pm, in message <201111030849.DAA15344 at smc.vnet.net>, Bob > Hanlon <hanlonr357 at gmail.com> wrote: >> Use higher precision. >> >> Plot[(-1 + 2 n)^2 (-5077311495040 + 256771815840909 n - >> 6285087811295946 n^2 + 99108751736880828 n^3 - >> 1130572436430176064 n^4 + 9932051583279890496 n^5 - >> 69845429986320295296 n^6 + 403489321408322272512 n^7 - >> 1949815250878086761472 n^8 + 7985109816575584026624 n^9 - >> 27976513439837284724736 n^10 + 84423827219928959287296 n^11 - >> 220448430557212109488128 n^12 + 499528909151513065046016 n^13 - >> 983522463480512590086144 n^14 + 1682263859668487045185536 n^15 - >> 2495534893540205641334784 n^16 + 3200240859272788875411456 n^17 - >> 3529950418080000008257536 n^18 + 3325177849291516859645952 n^19 - >> 2648782194444972790382592 n^20 + 1760454182292395183308800 n^21 - >> 958285503480825479430144 n^22 + 416134125894081039040512 n^23 - >> 138626084433937223909376 n^24 + 33263436995017750609920 n^25 - >> 5117451845387346247680 n^26 + 379070507065729351680 n^27), {n, >> 0.35, 0.53}, WorkingPrecision -> 25] >> >> >> Bob Hanlon >> >> >> On Wed, Nov 2, 2011 at 7:21 AM, Artur <grafix at csl.pl> wrote: >>> Plot[ (-1 + 2 n)^2 (-5077311495040 + 256771815840909 n - >>> 6285087811295946 n^2 + 99108751736880828 n^3 - >>> 1130572436430176064 n^4 + 9932051583279890496 n^5 - >>> 69845429986320295296 n^6 + 403489321408322272512 n^7 - >>> 1949815250878086761472 n^8 + 7985109816575584026624 n^9 - >>> 27976513439837284724736 n^10 + 84423827219928959287296 n^11 - >>> 220448430557212109488128 n^12 + 499528909151513065046016 n^13 - >>> 983522463480512590086144 n^14 + 1682263859668487045185536 n^15 - >>> 2495534893540205641334784 n^16 + 3200240859272788875411456 n^17 - >>> 3529950418080000008257536 n^18 + 3325177849291516859645952 n^19 - >>> 2648782194444972790382592 n^20 + 1760454182292395183308800 n^21 - >>> 958285503480825479430144 n^22 + 416134125894081039040512 n^23 - >>> 138626084433937223909376 n^24 + 33263436995017750609920 n^25 - >>> 5117451845387346247680 n^26 + 379070507065729351680 n^27), {n, >>> 0.35, 0.53}] >
- References:
- How to eliminate noises?
- From: Artur <grafix@csl.pl>
- How to eliminate noises?