minimization a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123020] minimization a matrix
- From: Herman <btta2010 at gmail.com>
- Date: Mon, 21 Nov 2011 04:24:56 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
I have a problem in minimization of the given matrix \[Sigma]M[\[Rho]_, \[Phi]_] := Cosh[2 \[Rho]]/ 2 ({{1 + Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [ 2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]], 1 - Tanh[2 \[Rho]] Cos[\[Phi]]}}) \[Tau][\[Alpha]_, \[Omega]0_, t_, r_, \[Rho]_, \[Phi]_] := Det[At[\[Alpha], \[Omega]0, t, r] - Ct[\[Alpha], \[Omega]0, t, r] Inverse[(At[\[Alpha], \[Omega]0, t, r] + \[Sigma]M[\[Rho], \[Phi]])] Ct[\[Alpha], \[Omega]0, t, r]\[Transpose]] where , \[Rho] >= 0, 0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}] where as At & Ct are depend on real number constants. I would highly appreciate it if you could write me any comments on how to minimize the the determinat of the matrixa \tau