Re: How to do quickest
- To: mathgroup at smc.vnet.net
- Subject: [mg123055] Re: How to do quickest
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Tue, 22 Nov 2011 05:33:31 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201111210929.EAA14830@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
Sorry, I had a couple of typos. Correct is: Clear[x, y] kk = m /. First@Solve[{4 m^2 + 6 m n + n^2 == x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}]; Timing[qq = First@Last@Reap@Do[y = x^3 // Sqrt // Round; (x^3 - y^2) != 0 && (len = Length@CoefficientList[MinimalPolynomial[kk][z], z]) < 12 && Sow@{x, y, kk, len}, {x, 2, 3000}]] {13.5446, {{1942, 85580, -3 Sqrt[2/5], 3}, {2878, 154396, -Sqrt[2], 3}}} and Clear[x, y] kk = m /. First@Solve[{4 m^2 + 6 m n + n^2 == x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}]; Timing[qq = First@Last@ Reap@Do[SquareFreeQ@x && (y = x^3 // Sqrt // Round; True) && ( len = Length@CoefficientList[MinimalPolynomial[kk][z], z]) < 12 && Sow@{x, y, kk, len}, {x, 2, 3000}]] {8.47326, {{1942, 85580, -3 Sqrt[2/5], 3}, {2878, 154396, -Sqrt[2], 3}}} Bobby On Mon, 21 Nov 2011 16:28:08 -0600, DrMajorBob <btreat1 at austin.rr.com> wrote: > Here's your code timed with an upper limit of 3000: > > Timing[Do[y = Round[Sqrt[x^3]]; > If[(x^3 - y^2) != 0, > kk = m /. > Solve[{4 m^2 + 6 m n + n^2 == > x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}][[1]]; > ll = CoefficientList[MinimalPolynomial[kk][[1]], #1]; > lll = Length[ll]; > If[lll < 12, Print[{x/(x^3 - y^2)^2, kk, x, y, x^3 - y^2}]; > If[Length[ll] == 3, Print[{kk, x, y}]]]], {x, 2, 3000}]] > > {971/1377495072,3 Sqrt[2/5],1942,85580,52488} > > {3 Sqrt[2/5],1942,85580} > > {1439/117596448,Sqrt[2],2878,154396,15336} > > {Sqrt[2],2878,154396} > > {187.257, Null} > > This is better: > > Clear[x, y] > kk = m /. > First@Solve[{4 m^2 + 6 m n + n^2 == > x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}]; > Timing[qq = First@Last@Reap@Do[y = x^3 // Sqrt // Round; > (x^3 - y^2) != 0 && > > Length@CoefficientList[MinimalPolynomial[kk][z], z] < 12 && > Sow@{x, y, kk, len}, {x, 2, 3000}]] > > {14.0493, {{1942, 85580, -3 Sqrt[2/5], 13}, {2878, 154396, -Sqrt[2], > 13}}} > > And this, even better: > > Clear[x, y] > kk = m /. > First@Solve[{4 m^2 + 6 m n + n^2 == > x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}]; > Timing[qq = > First@Last@ > Reap@Do[SquareFreeQ@x && (y = x^3 // Sqrt // Round; True) && > > Length@CoefficientList[MinimalPolynomial[kk][z], z] < 12 && > Sow@{x, y, kk, len}, {x, 2, 3000}]] > > {8.39548, {{1942, 85580, -3 Sqrt[2/5], 13}, {2878, 154396, -Sqrt[2], > 13}}} > > All this is VERY slow nonetheless. Maybe there's another way to > characterize the problem? > > Bobby > > On Mon, 21 Nov 2011 03:29:38 -0600, Artur <grafix at csl.pl> wrote: > >> Dear Mathematica Gurus, >> How to do quickest following procedure (which is very slowly): >> >> qq = {}; Do[y = Round[Sqrt[x^3]]; >> If[(x^3 - y^2) != 0, >> kk = m /. Solve[{4 m^2 + 6 m n + n^2 == >> x, (19 m^2 + 9 m n + n^2) Sqrt[m^2 + n^2] == y}, {m, n}][[1]]; >> ll = CoefficientList[MinimalPolynomial[kk][[1]], #1]; >> lll = Length[ll]; >> If[lll < 12, Print[{x/(x^3 - y^2)^2, kk, x, y, x^3 - y^2}]; >> If[Length[ll] == 3, Print[{kk, x, y}]]]], {x, 2, 1000000}]; >> qq >> >> >> (*Best wishes Artur*) >> > > -- DrMajorBob at yahoo.com
- References:
- How to do quickest
- From: Artur <grafix@csl.pl>
- How to do quickest