Memory low for PDE
- To: mathgroup at smc.vnet.net
- Subject: [mg123163] Memory low for PDE
- From: Sérgio Lira <sergiobodoh at gmail.com>
- Date: Fri, 25 Nov 2011 04:54:41 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hello folks, I am trying to solve some coupled partial diferential equations using NDSolve but after 10 min of calculations the kernel shuts down and says: "No more memory available. Mathematica kernel has shut down." The equations are pretty huge and I have tried to change some integration options such as AccuracyGoal, MaxStepFraction, PrecisionGoal, MaxSteps, Method, SpatialDiscretization, but still couldn't solve the equations. This is the program: << Calculus`VectorAnalysis` Nch[f_, x_, y_, t_] := Nch[f, x,y, t] = (Grad[f, Cartesian[x, y, z]])/ Sqrt[DotProduct[(Grad[f, Cartesian[x, y, z]]), (Grad[f, Cartesian[x, y, z]])]]; Sch[f_, x_, y_, t_] :=Sch[f, x, y, t] = CrossProduct[Nch[f, x, y, t], {0, 0, 1}]; K[f_, x_, y_, t_] := K[f, x, y, t] = -Div[Nch[f, x, y, t], Cartesian[x, y, z]]; G[f_, x_, y_, t_] := G[f, x, y, t] = 2*DotProduct[Sch[f, x, y, t], (B*Grad[K[f, x, y, t], Cartesian[x, y, z]] - {x, y, 0})]; eps = 0.1; epst = 0.2; B = 0.01; eqn2 = NDSolve[{ epst*D[psi[x, y, t], t] == Laplacian[psi[x, y, t], Cartesian[x, y, z]] + 1/(eps*Sqrt[8])*G[theta[x, y, t], x, y, t]*(1 - (theta[x, y, t])^2), eps^2*D[theta[x, y,t], t] == Laplacian[theta[x, y, t], Cartesian[x, y, z]] + eps^2*DotProduct[{0, 0, 1}, CrossProduct[Grad[psi[x,y, t], Cartesian[x, y, z]], Grad[theta[x, y, t], Cartesian[x, y, z]]]], psi[x, y, 0] == 0, psi[-5, y, t] == 0, psi[5, y, t] == 0, psi[x, -5, t] == 0, psi[x, 5, t] == 0, theta[x, y, 0] == Tanh[(1 - Sqrt[x^2 + y^2])/(0.1*Sqrt[2])], theta[x, -5, t] == 0, theta[x, 5, t] == 0, theta[-5, y, t] ==0, theta[5, y, t] == 0}, {psi, theta}, {x, -5, 5}, {y, -5, 5}, {t, 0, 5}] Should I try to decrease the integration step and grid? Is there any method that could help? Cheers, Sergio
- Follow-Ups:
- Re: Memory low for PDE
- From: Arturo Amador <arturo.amador@ntnu.no>
- Re: Memory low for PDE