Villarceau circles of a torus
- To: mathgroup at smc.vnet.net
- Subject: [mg123238] Villarceau circles of a torus
- From: Chris Young <cy56 at comcast.net>
- Date: Mon, 28 Nov 2011 05:54:18 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Just want to pass along a way to investigate the geometry of various shapes via MeshFunctions. In this case, we're looking at tori and Villarceau circles. It's not too hard to just get all the slanted slices in a function: just take the function for horizontal mesh, z, and slant it, z + Tan[tilt] x. By varying the number of mesh points, we can see there's only one slice that will give two equal halves, and intersecting circles appear only in that case. Could vary the cross-section of the torus to see that tangency only holds for the case of a circular-cross-section. http://home.comcast.net/~cy56/Villarceau.nb http://home.comcast.net/~cy56/Villarceau.tiff http://home.comcast.net/~cy56/Villarceau2.png torus[c_, a_, \[Theta]_, \[Phi]_] := { Cos[\[Theta]] (c + a Cos[\[Phi]]), Sin[\[Theta]] (c + a Cos[\[Phi]]), a Sin[\[Phi]]} Manipulate[ Show[ Graphics3D[ { {Gray, Sphere[{0, 0, 0}, sphereR]}, {Red, Sphere[{c, 0, 0}, sphereR]} } ], ParametricPlot3D[ torus[c, a, u, v], {u, 0, 2 \[Pi]}, {v, 0, 2 \[Pi]}, MeshFunctions -> {{x, y, z, \[Theta], \[Phi]} \[Function] z + Tan[tilt] x}, Mesh -> mesh, MeshStyle -> Tube[tubeR], PlotStyle -> {Orange, Opacity[opac]}, PlotPoints -> plotPts ] , Axes -> True, AxesLabel -> {"x", "y", "z"}, PlotRange -> {{-4, 4}, {-4, 4}, {-3, 3}}, PlotRangePadding -> 0.1, BoxRatios -> {8, 8, 6}, ViewPoint -> { viewR Cos[view\[Theta]] Sin[view\[Phi]], viewR Sin[view\[Theta]] Sin[view\[Phi]], viewR Cos[view\[Phi]] }, PlotLabel -> Row[{"ArcSin[a/c] = ", N[ArcSin[a/c]]}] ], {{c, 3}, 0, 4}, {{a, 1}, 0, 3}, {{sphereR, 0.1}, 0, 0.5}, {{tubeR, 0.05}, 0, 0.5}, {{opac, 0.5}, 0, 1}, {{mesh, 1}, 0, 16, 1}, {{tilt, N[ArcSin[a/c]]}, 0, \[Pi]/2, \[Pi]/36}, {{plotPts, 50}, 0, 100, 5}, {{viewR, 100}, 0, 100, 5}, {{view\[Theta], \[Pi]/2}, 0, 2 \[Pi], \[Pi]/36}, {{view\[Phi], \[Pi]/2}, 0, \[Pi], \[Pi]/36} ]