Laplace Trasform system of differential equation
- To: mathgroup at smc.vnet.net
- Subject: [mg122022] Laplace Trasform system of differential equation
- From: elos <marusik_92 at inbox.ru>
- Date: Sun, 9 Oct 2011 03:53:07 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
where I made a mistake? I need to solve the system of differential equations using Laplace transforms and the plots. Solve happened, but no graphics. odeSys = {x'[t] - x[t] + y[t] == 0, y'[t] - x[t] - y[t] == 0, z'[t] - x[t] - y[t] - 2*z[t] == 0} eq1 = LaplaceTransform[odeSys, t, s] eq2 = Solve[eq1, {LaplaceTransform[x[t], t, s], LaplaceTransform[y[t], t, s], LaplaceTransform[z[t], t, s]}] sol1 = Map[InverseLaplaceTransform [#, s, t] &, eq2, {3}] /. {x[0] -> 1, y[0] -> 1, z[0] -> 1} sol2 = DSolve[{odeSys, x[0] == 1, y[0] == 1, z[0] == 1}, {x[t], y[t], z[t]}, t] // Simplify ParametricPlot[Evaluate[{x[t], y[t], z[t]} /. sol1], {t, 0, 1}, PlotStyle -> {Hue[0.5], Thickness[0.01]}] Here is system of differential equations: x'[t]=x[t]-y[t] y'[t]=x[t]+y[t] z'[t]=x[t]+y[t]+2*z[t]