Re: general formula for differentiating a spherical bessel function of
- To: mathgroup at smc.vnet.net
- Subject: [mg122056] Re: general formula for differentiating a spherical bessel function of
- From: Peter Pein <petsie at dordos.net>
- Date: Tue, 11 Oct 2011 04:23:33 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Am 09.10.2011 09:58, schrieb raj kumar: > hi there!, > i am trying to obtain a general formula for differentiating a > spherical bessel function of the form SphericalBesselJ[L, kr] m times > with respect to k > > D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 1}] // > FullSimplify // Apart= > (L SphericalBesselJ[L, k Subscript[r, 2]])/k - > SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2] > > D[SphericalBesselJ[L, k Subscript[r, 2]], {k, 2}] // > FullSimplify // Apart = > ((-1 + L) L SphericalBesselJ[L, k Subscript[r, 2]])/k^2 + ( > 2 SphericalBesselJ[1 + L, k Subscript[r, 2]] Subscript[r, 2])/k - > SphericalBesselJ[L, k Subscript[r, 2]] \! > \*SubsuperscriptBox[\(r\), \(2\), \(2\)] > and so on. > is there a general formula in terms of SphericalBesselJ[L, kr]? > as far as I understand, the third formula on this page might be of (minor?) help: http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/20/02/02/