can not understand the symbol or the equation for an integration result
- To: mathgroup at smc.vnet.net
- Subject: [mg122220] can not understand the symbol or the equation for an integration result
- From: Jing <jing.guo89 at yahoo.com>
- Date: Fri, 21 Oct 2011 06:24:05 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hi,
I am trying to integrate a equation,
1/72 (8 Sqrt[3] r^3 -
Sqrt[3] r^2 Sqrt[r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2])] -
2 Sqrt[3] y^2 Sqrt[r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2])] +
6 y Sqrt[(r^2 - y^2) (r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2]))])
But the result is kind of confusing.First, the variable y is changed to another variable y -> -r Sin[t].
exp1 = Simplify[1/72 (8 Sqrt[3] r^3 -
Sqrt[3] r^2 Sqrt[r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2])] -
2 Sqrt[3] y^2 Sqrt[r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2])] +
6 y Sqrt[(r^2 - y^2) (r^2 + 2 y (y - Sqrt[3] Sqrt[r^2 - y^2]))])
/. {y -> -r Sin[t]}, r > 0 && 0 < t < Pi/6]
result:-(1/72) r^3 (3 Sin[2 t] Sqrt[2 - Cos[2 t] + Sqrt[3] Sin[2 t]] +
Sqrt[3] (-8 + Sqrt[1 + 2 Sin[t]^2 + Sqrt[3] Sin[2 t]] +
2 Sin[t]^2 Sqrt[1 + 2 Sin[t]^2 + Sqrt[3] Sin[2 t]]))
Then,do integration :
m19 = Integrate[-r Cos[t] exp1, t, Assumptions -> {r > 0}]
final result:
1/72 r^4 (-8 Sqrt[3] Sin[t] + (3 t (Sqrt[3] Cos[t] + 3 Sin[t]))/(
2 Sqrt[2 - Cos[2 t] + Sqrt[3] Sin[2 t]]) - (
Sqrt[2 - Cos[2 t] +
Sqrt[3] Sin[2 t]] (6 (I + Sqrt[3]) Cos[t] +
3 (I + Sqrt[3]) Cos[
3 t] + (3 + I Sqrt[3]) (-8 Sin[t] + Sin[3 t])))/(
8 (I + Sqrt[3])))
I don't know what the I is. Is it the imaginary number? Why it can appear?
Thanks
- Follow-Ups:
- Re: can not understand the symbol or the equation for an integration result
- From: Patrick Scheibe <pscheibe@trm.uni-leipzig.de>
- Re: can not understand the symbol or the equation for an integration result