Table to calculate faster
- To: mathgroup at smc.vnet.net
- Subject: [mg122354] Table to calculate faster
- From: Michelle Maul <michellemaul312 at gmail.com>
- Date: Wed, 26 Oct 2011 17:38:47 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
I am trying to perform a heat transfer calculation on a wall with transient heating. I am using rules so that we can easily change the material. I want to be able to do several hundred time steps but I am only able to get about 10 in an hour. It is a pretty straight forward calculation so I'm wondering why it is taking so long to compute. This is a calculation that Excel would be good at because it is taking data from the cells above it to solve. Help please T[0, t_] := (1. - 2. \[Tau] - (2. \[Tau] Subscript[h, in] \[CapitalDelta]x)/k) T[ 0, t - 1] + 2. \[Tau] T[1, t - 1] + (2. \[Tau] Subscript[h, in] \[CapitalDelta]x)/k* Subscript[T, in] /. masonry; T[m_, t_] := \[Tau] (T[m - 1, t - 1] + T[m + 1, t - 1]) + (1. - 2. \[Tau]) T[m, t - 1] /. masonry; T[5, t_] := (1. - 2. \[Tau] - 2. \[Tau] (Subscript[h, out] \[CapitalDelta]x)/k) T[5, t - 1] + 2. \[Tau] T[4, t - 1] + 2. \[Tau] (Subscript[h, out] \[CapitalDelta]x)/ k*(Subscript[T, out] /. {x -> t}) + 2. \[Tau] (\[Kappa] *(Subscript[q, solar] /. {x -> t}) \[CapitalDelta]x)/k /. masonry; solution = Transpose[Table[T[n, x], {n, 0, 5}, {x, 0, 24}]] Thank you
- Follow-Ups:
- Re: Table to calculate faster
- From: Jacopo Bertolotti <jacopo.bertolotti@gmail.com>
- Re: Table to calculate faster