Re: "Complex" Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg125900] Re: "Complex" Integral
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Fri, 6 Apr 2012 05:57:23 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201204050958.FAA13384@smc.vnet.net>
q1 = Cos[\[Theta]] + 1; q2 = Cos[\[Theta]] - 1; q3 = 2*Sin[\[Theta]]; q4 = 2*Cos[\[Theta]]; a = Sqrt[Cos[\[Theta]]]; (* cannot use a=sqrt(Cos[\[Theta]]) *) e = (a/2)*(q1 + q2*Cos[2*\[Phi]]); (* your notebook erroneously contains TextCell[""] embedded in \ equation for e *) f = e*(E^(I*k*\[Rho]*Sin[\[Theta]]*Cos[\[Phi] - ph])* E^(I*k*z*Cos[\[Theta]])* Sin[\[Theta]]); \[Lambda] = 600/10^9; n = 1; k = 2*(Pi/\[Lambda]); z = 0; \[Rho] = 100/10^9; ph = 1; g = Re[f] // ComplexExpand // FullSimplify; Plot3D[g, {\[Theta], 0, 2*Pi}, {\[Phi], 0, 1.2}] NIntegrate[g, {\[Theta], 0, 2*Pi}, {\[Phi], 0, 1.2}] // Chop -0.0669811 f = f // ComplexExpand // FullSimplify; NIntegrate[f, {\[Theta], 0, 2*Pi}, {\[Phi], 0, 1.2}] -0.0669811 + 0.675092 I Bob Hanlon On Thu, Apr 5, 2012 at 5:58 AM, Elad <eladarbel at hotmail.com> wrote: > Hi Guys, > > Im trying to calculate a the integral over the function f(Theta,Phi ; Rho,ph,z ; k) > [Theta -> 0..2 Pi, Phi ->0..1.2], for a given values of [Rho,ph,z ; k] > > actually i need to calculate f[] for a broad range of values for [Rho,ph,z]. > > > f = (1/2)* > E^(I*k*z*Cos[\[Theta]] + I*k*\[Rho]*Cos[ph - \[Phi]]*Sin[\[Theta]])* > sqrt*Cos[\[Theta]]* > (1 + Cos[\[Theta]] + (-1 + Cos[\[Theta]])*Cos[2*\[Phi]])* > Sin[\[Theta]] > > Im new with Mathematica, and ive read the documentation but probably im doing something wrong, > Ive also tried to plot the surface for given values of [Rho,ph,z ; k] without much success. > > Here is a link to notebook where i tried to plot the surface (from my dropbox): > http://dl.dropbox.com/u/50792162/B1.nb > > I would appreciate it if you guys could help me out with it. > > 10x > Elad
- References:
- "Complex" Integral
- From: Elad <eladarbel@hotmail.com>
- "Complex" Integral