Re: NIntegrate about singular point
- To: mathgroup at smc.vnet.net
- Subject: [mg126137] Re: NIntegrate about singular point
- From: danl at wolfram.com
- Date: Fri, 20 Apr 2012 07:46:42 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <jmjf8p$89v$1@smc.vnet.net>
On Tuesday, April 17, 2012 5:05:13 AM UTC-5, bowlderster wrote: > Hello, all. > I am dealing with an integral as following > > h = 1 > m = 1 > n = 1 > t = 1 > k = 4.0269 > kk = 4.0284 > Plot[x^(m + n - 1)/(x*Sinh[x*h] - > kk*Cosh[x*h])*((x + > kk)*((-1)^(m + n)*Exp[x*(2.*(-0.2) + h)] - ((-1)^m + (-1)^n)* > Exp[-x*h]) + (x - kk)*Exp[-x*(2.*(-0.2) + h)]), {x, 0, 40}] > NIntegrate[ > x^(m + n - 1)/(x*Sinh[x*h] - > kk*Cosh[x*h])*((x + > kk)*((-1)^(m + n)*Exp[x*(2.*(-0.2) + h)] - ((-1)^m + (-1)^n)* > Exp[-x*h]) + (x - kk)*Exp[-x*(2.*(-0.2) + h)]), {x, 0, > Infinity}] > > It has a singular point when the denominator is zero. > At begining, I try to solve it in another system, yet with Nan result. > > It is the first time for me to use Mathematica. > Can it solve the integral with singular point? > > Thanks for your help It's not an integrable singularity. To see this, find poles (there is only one, actually), and check the series expansions there. In[208]:= h = 1; m = 1; n = 1; t = 1; k = 40269/10000; kk = 40284/10000; expr = Rationalize[(x^(m + n - 1)/(x*Sinh[x*h] - kk*Cosh[x*h]))* ((x + kk)*((-1)^(m + n)*Exp[x*(2.*-0.2 + h)] - ((-1)^m + (-1)^n)* Exp[(-x)*h]) + (x - kk)*Exp[(-x)*(2.*-0.2 + h)])] Out[214]= (x*((-(10071/2500) + x)/ E^((3*x)/5) + (2/E^x + E^((3*x)/5))*(10071/2500 + x)))/ (-((10071*Cosh[x])/2500) + x*Sinh[x]) In[218]:= poles = x /. Solve[Denominator[expr] == 0 && x >= 0, x] Out[218]= {Root[{10071 - 2500*#1 + (10071 + 2500*#1)/E^(2*#1) & , 4.0309413727078305519742154202340325203130636422539920318199`\ 20.60201996114937}]} In[221]:= Quiet[series = (Series[expr, {x, #1, 1}] & ) /@ poles]; In[223]:= N[Normal[series]] Out[223]= {-0.35541518014768414 + 12.935900519888259/(-4.03094137270783 + x) - 0.49281698406801144*(-4.03094137270783 + x)} We have a 1/(x-pole) singularity, ergo no convergence. Daniel Lichtblau Wolfram Research