Re: Why does the order of down values come back?
- To: mathgroup at smc.vnet.net
- Subject: [mg124788] Re: Why does the order of down values come back?
- From: Shizu <slivo.vitz at msa.hinet.net>
- Date: Tue, 7 Feb 2012 04:00:36 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
In[]:= g[x_ + y_] := op1[x, y]; g[x_ y_] := op2[x, y] In[]:= DownValues[g] Out[]:= {HoldPattern[g[x_ + y_]] :> op1[x, y], HoldPattern[g[x_ y_]] :> op2[x, y]} In[]:= DownValues[g] = Reverse[DownValues[g]] Out[]:= {HoldPattern[g[x_ y_]] :> op2[x, y], HoldPattern[g[x_ + y_]] :> op1[x, y]} In[]:= DownValues[g] Out[]:= {HoldPattern[g[x_ y_]] :> op2[x, y], HoldPattern[g[x_ + y_]] :> op1[x, y]} =================================================== What I did here does NOT make sense either. But after reordering, the original order doesn't come back. This one is predictable. Actually, we can even define the previous function as follows: In[]:= f[n_] := f[n - 1] + f[n - 2]; f[1] := 1; f[0] := 0; In[]:= f[10] Out[]:= 55 The order we set up the function is not important. Any comments? Thanks.