Re: Why does the order of down values come back?
- To: mathgroup at smc.vnet.net
- Subject: [mg124802] Re: Why does the order of down values come back?
- From: "Oleksandr Rasputinov" <oleksandr_rasputinov at ymail.com>
- Date: Tue, 7 Feb 2012 04:05:34 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <jgo0e9$a2k$1@smc.vnet.net>
On Mon, 06 Feb 2012 07:45:13 -0000, Shizu <slivo.vitz at msa.hinet.net> wrote: > In[]:= f[0] := 0;f[1] := 1;f[n_] := f[n - 1] + f[n - 2] > > In[]:= DownValues[f] > Out[]:= {HoldPattern[f[0]] :> 0, HoldPattern[f[1]] :> 1, > HoldPattern[f[n_]] :> f[n - 1] + f[n - 2]} > > In[]:= DownValues[f] = Reverse[DownValues[f]] > Out[]:= {HoldPattern[f[n_]] :> f[n - 1] + f[n - 2], HoldPattern[f[1]] :> > 1, HoldPattern[f[0]] :> 0} > > In[]:= DownValues[f] > Out[]:= {HoldPattern[f[0]] :> 0, HoldPattern[f[1]] :> 1, > HoldPattern[f[n_]] :> f[n - 1] + f[n - 2]} > > ==================================================== > My question is: > > Why does the order of down values comes back after reordering? > > Thanks. > Because DownValues sorts its output by default. The actual downvalues are not, however, sorted; the order is as you set them. To see their actual order, use the (undocumented) option: DownValues[f, Sort -> False]
- Follow-Ups:
- Re: Why does the order of down values come back?
- From: DrMajorBob <btreat1@austin.rr.com>
- Re: Why does the order of down values come back?