How to convert recurrence into generating function?
- To: mathgroup at smc.vnet.net
- Subject: [mg125040] How to convert recurrence into generating function?
- From: Lee Martin <galeomaga at gmail.com>
- Date: Sun, 19 Feb 2012 06:30:26 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
there is an Mexiner recurrence equation, but both generatingfunction and convert not convert into generating function as stated in paper. How to recurrence into generating function correctly? GeneratingFunction[c*(n+beta)*P(n+1)/(-1+c)+(c*(x+beta)/(1-c)-x)*P(n) +n*P(n-1)/(-1+c) = 0,n,z] GeneratingFunction[c*(n+beta)*P(n+1)/(-1+c)+(c*(x+beta)/(1-c)-x)*P(n) +n*P(n-1)/(-1+c),n,z] Expand((c*(n+beta)*P[n+1]/(-1+c)+(c*(x+beta)/(1-c)-x)*P[n]+n*P[n-1]/ (-1+c))*z^n/n!) Convert[sum[z^n*c*P[n+1]*n/(n!*(-1+c))+z^n*c*P[n+1]*beta/(n!*(-1+c)) +z^n*P[n]*c*x/(n!*(1-c))+z^n*P[n]*c*beta/(n!*(1-c))-z^n*P[n]*x/n! +z^n*n*P[n-1]/(n!*(-1+c)),{n,0,infinity}],z] Convert[sum[(c*(n+beta)*P[n+1]/(-1+c)+(c*(x+beta)/(1-c)-x)*P[n] +n*P[n-1]/(-1+c))*z^n/n!,{n,0,infinity}],z]