Re: Integration of expressions with symbolic limits

*To*: mathgroup at smc.vnet.net*Subject*: [mg127431] Re: Integration of expressions with symbolic limits*From*: "Dave Snead" <dsnead6 at charter.net>*Date*: Tue, 24 Jul 2012 04:15:58 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*Delivered-to*: mathgroup-newout@smc.vnet.net*Delivered-to*: mathgroup-newsend@smc.vnet.net*References*: <20120723235352.0ED466790@smc.vnet.net>

Add some assumptions about the domains of a and b, then you will get a symbolic answer. For example: Integrate[ a/(2*(x^3/2)*(x - a^2)^1/2), {x, a^2 + b^2, a^2 + (1 - b)^2}, Assumptions -> 0 < a && 0 < b < 1/2] gives: 2*a*(((-1 + 2*b)*(4*a^4 + 2*(-1 + b)^2*b^2 + a^2*(3 + 6*(-1 + b)*b)))/ (2*a^4*(a^2 + (-1 + b)^2)^2*(a^2 + b^2)^2) + Log[((-1 + b)^2*(a^2 + b^2))/((a^2 + (-1 + b)^2)*b^2)]/a^6) Cheers, Dave Snead -----Original Message----- From: Rahul Chakraborty Sent: Monday, July 23, 2012 4:53 PM To: mathgroup at smc.vnet.net Subject: [mg127431] Integration of expressions with symbolic limits Dear Sir, I would like to know one thing regarding the above subject, if it is possible in Mathematica to have a symbolic result. My code is as below Integrate [a/(2*(x^3/2)*(x-a^2)^1/2),{x,a^2+b^2,a^2+(l-b)^2}] ERROR: Integrate::ilim: Invalid integration variable or limit(s) in {0.5,a^2+b^2,a^2+(-b+l)^2}. >> Regards, rc

**References**:**Integration of expressions with symbolic limits***From:*Rahul Chakraborty <rahul.6sept@gmail.com>