[Date Index]
[Thread Index]
[Author Index]
How to relate two functions
*To*: mathgroup at smc.vnet.net
*Subject*: [mg127468] How to relate two functions
*From*: William Duhe <williamduhe at hotmail.com>
*Date*: Fri, 27 Jul 2012 04:57:35 -0400 (EDT)
*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com
*Delivered-to*: mathgroup-newout@smc.vnet.net
*Delivered-to*: mathgroup-newsend@smc.vnet.net
So here I have several functions plotted, a[t], B[t],Rm[t]. What I need is syntax that will allow me to see the value of a[t] when T[t] is 1. This should be easy to see that at first when T[t] is 1 a[t] is also one, but as the function turns around T[t] becomes 1 again, at about t = 575, and a[t] has risen by a certain amount. I need to quantify this amount.I have plotted a parametric plot of a[t] vs T[t] and what I need to do is find the Y-INTERCEPTS of that plot in order to get the data I need, but other more sophisticated methods would also be welcome. Thanks ahead of time for any help!
The syntax is provided bellow.
M = 100;
g = 1;
\[Alpha] = 1;
ti = 0;(*initial time*)
tf = 700; (*final plot time*)
m = 1;
RB[t] = (m*T[t]^3*g)/(2*\[Pi])^(3/2)*(m/T[t])^(3/2)*E^(-m/T[t]);
R = 0.0005;
V = 5*10^(-12)*M^4;
i = Sqrt[(g*m^4 - V)/(3*M^2)]*m;
rR = g*T[t]^4;(*Energy Density-Radiation*)
pR = g*T[t]^4;(*Pressure-Radiation*)
pM = 0;(*Pressure-Phi Particle*)
r = rR + Rm[t] - V;(*Overall Energy Density*)
p = pR + V;(*Overall Pressure*)
s1 = NDSolve[{a''[t] == -a[t]*1/(6*M^2) (2*g*T[t]^4 + 2 V + Rm[t]),
T'[t] == (R*Rm[t])/
T[t]^3 - (Sqrt[3/2]*\[Alpha]^2)/(
Sqrt[T[t]]*m^(
11/2))*(((g*T[t]^3*m)/(2*\[Pi])^(3/2)*(m/T[t])^(3/2)*
E^(-m/T[t]))^2 - Rm[t]^2) - (a'[t]*T[t])/a[t],
Rm'[t] == -R*Rm[t] + (Sqrt[3/2]*\[Alpha]^2*T[t]^(5/2))/m^(
11/2)*((g/(2*\[Pi])^(3/2)*(m/T[t])^(3/2)*E^(-m/T[t]))^2 -
Rm[t]^2) - 3 a'[t]/a[t]*Rm[t], T[0] == m,
Rm[0] == g/(2*\[Pi])^(3/2)*E^-1, a'[0] == i, a[0] == 1}, {a[t],
T[t], Rm[t]}, {t, ti, tf}, Method -> "BDF"]
Plot[Evaluate[Rm[t]/RB[t] /. s1], {t, ti, tf}, PlotRange -> Automatic,
AxesLabel -> {Time, Rm[t]}]
Plot[Evaluate[T[t] /. s1], {t, ti, tf}, PlotRange -> Automatic,
AxesLabel -> {Time, T[t]}]
Plot[Evaluate[a[t] /. s1], {t, ti, tf}, PlotRange -> Automatic,
AxesLabel -> {Time, a[t]}]
Plot[{Evaluate[a[t] /. s1], Evaluate[T[t] /. s1]}, {t, ti, tf},
PlotRange -> Automatic, AxesLabel -> {Time, a[t]}]
ParametricPlot[Evaluate[{T[t], a[t]} /. s1], {t, ti, tf},
PlotRange -> Automatic]
Prev by Date:
**Heat equation at the surface of a sphere**
Next by Date:
**Re: Putting a Test or Condition on the Right-Hand Side of a Function**
Previous by thread:
**Re: Heat equation at the surface of a sphere**
Next by thread:
**Re: How to relate two functions**
| |