Re: solving DE numerically....
- To: mathgroup at smc.vnet.net
- Subject: [mg126701] Re: solving DE numerically....
- From: "Kevin J. McCann" <kjm at KevinMcCann.com>
- Date: Fri, 1 Jun 2012 05:16:17 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <jq74dd$qj1$1@smc.vnet.net>
Greetings from a rather steamy Washington, DC. I think your problem is that k is a function of x not a fixed parameter in the DE. Here is my take on your problem. I made both pw3 and k explicit functions of x. Drop this into a notebook, put the cursor in the cell and type ctrl-shift-n to make it look nice. Cheers, Kevin Clear[pw3, x, k] (* note the set delayed (:=) in the next two *) pw3[x_] := Piecewise[{{V0, x < a}, {V0, x == a}}, 0]; k[x_] := Sqrt[10 - pw3[x]]; V0 = -1; a = 2; Table[{x, k[x]}, {x, 1, 5}] Plot[pw3[x], {x, 0, 5}] s33 = NDSolve[{(y1^\[Prime]\[Prime])[x] + Sqrt[k[x]] y1[x] == 0, y1[0.1] == 0, Derivative[1][y1][0.1] == 10^-6}, y1, {x, 0.1, 10}] Y1 = y1 /. s33[[1]] (*Check the IC *) {Y1[0.1], Y1'[0.1]} Table[{x, Y1[x]}, {x, 1, 5, 1}] Plot[Y1[x], {x, 0.1, 10}] (* Check that the de is zero (almost) *) Plot[(Y1^\[Prime]\[Prime])[x] + Sqrt[k[x]] Y1[x], {x, 0.1, 10}] On 5/31/2012 2:51 AM, raj kumar wrote: > hi all, > greetings from sunny malaysia! > this pertains to solving a DE numerically at 5 differnt points.Should be straigth forward. But i get different results when i try to insert one parameter "by hand".have i overlooked something? > > any feed-back will be most appreciated > > Please consider the following: > > In[137]:= pw3 = Piecewise[{{V0, x< a}, {V0, x == a}}, 0]; > k = Sqrt[10 - pw3]; > V0 = -1; > a = 2; > Table[{x, k}, {x, 1, 5}] > (*Plot[Piecewise[{{V0, x<a}, {V0,x==a}},0],{x,0,5}]*) > > > Out[141]= {{1, Sqrt[11]}, {2, Sqrt[11]}, {3, Sqrt[10]}, {4, Sqrt[ > 10]}, {5, Sqrt[10]}} > > Solve the following DE numerically for y1[ > 1.0], y1[2.0], y1[3], y1[4], y1[5] > > In[148]:= > s33 = NDSolve[{(y1^\[Prime]\[Prime])[x] + Sqrt[k] y1[x] == 0, > y1[0.1] == 0, Derivative[1][y1][0.1] == 1/10^6}, y1, {x, 1, 10}]; > > > We obtain > > In[149]:= {y1[1.0], y1[2.0], y1[3], y1[4], y1[5]} /. s33 > > Out[149]= {{6.9408*10^-7, > 4.08303*10^-7, -5.09458*10^-7, -6.64851*10^-7, 1.70684*10^-7}} > > now check the output above for the values x = > 1 to x = 5. For x = 1, 2, > we insert k = > Sqrt[11] by hand in the same DE above and work out the values for \ > the same points again. We get > > In[144]:= > s11 = NDSolve[{(y11^\[Prime]\[Prime])[x] + Sqrt[ 11] y11[x] == 0, > y11[0.1] == 0, Derivative[1][y11][0.1] == 1/10^6}, > y11, {x, 1, 10}]; > > In[145]:= {y11[1.0], y11[2.0]} /. s11 > > Out[145]= {{5.47931*10^-7, -1.68202*10^-7}} > > Out[105]= {{5.47931*10^-7, -1.68202*10^-7}} > > For x = 3, 4, 5, k = Sqrt[10]. We get > > In[146]:= > s11 := NDSolve[{(y11^\[Prime]\[Prime])[x] + Sqrt[10] y11[x] == 0, > y11[0.1] == 0, Derivative[1][y11][0.1] == 1/10^6}, > y11, {x, 1, 10}]; > > > > In[147]:= {y11[3], y11[4], y11[5]} /. s11 > > Out[147]= {{-5.30318*10^-7, 3.34051*10^-7, 4.16315*10^-7}} > > Qn : Should the values for y11[1-5] be any different from that calculated earlier ie y1[1-5]? >