Re: Complex equation+ NDsolve

*To*: mathgroup at smc.vnet.net*Subject*: [mg126763] Re: Complex equation+ NDsolve*From*: Bob Hanlon <hanlonr357 at gmail.com>*Date*: Wed, 6 Jun 2012 04:50:49 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*References*: <201206050853.EAA04779@smc.vnet.net>

>From the documentation: "The differential equations in NDSolve can involve complex numbers. " sol = NDSolve[{y'[t] == Sqrt[y[t]] - 1, y[0] == 1/10}, y, {t, 0, 1}, Method -> "ExplicitRungeKutta"][[1]]; s[t_?NumericQ] := y[t] /. sol b = t /. FindRoot[Im[s[t]] == 10^-16, {t, 0.1, 0.2}] 0.127783 ParametricPlot[ {Re[s[t]], Im[s[t]]}, {t, 0, 1}, Frame -> True, Axes -> False, Epilog -> {Red, AbsolutePointSize[3], Point[{Re[s[b]], Im[s[b]]}]}, FrameLabel -> {"Re", "Im"}] Bob Hanlon On Tue, Jun 5, 2012 at 4:53 AM, <sumarna.haroon at gmail.com> wrote: > Can Mathematica solve Complex partial differential equations?? using NDsolve >

**References**:**Complex equation+ NDsolve***From:*sumarna.haroon@gmail.com