Re: Polarplot orientation

*To*: mathgroup at smc.vnet.net*Subject*: [mg126827] Re: Polarplot orientation*From*: "Mat' G\." <ellocomateo at free.fr>*Date*: Mon, 11 Jun 2012 00:00:44 -0400 (EDT)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*References*: <22124787.29000.1339226218251.JavaMail.root@m06> <jr1e7h$76f$1@smc.vnet.net>

2012-06-10 08:18, djmpark scripsit: > Mateo, > > There is probably a way to do this in regular Mathematica. Nevertheless I > did a case using the Presentations Application. I assume that you are > looking for a polar grid with 0 degrees at the top and the angles increasing > clockwise. The following achieves this. > > << Presentations` > > First is the "normal" case with the angle measure counterclockwise from the > x axis. > > Draw2D[ > {{DrawPolarGrid[{ComplexPolar[0.25, -180 \[Degree]], > ComplexPolar[2, 180 \[Degree]], > ComplexPolar[0.25, 45 \[Degree]], {2, 9}}, > PGLabelAxis -> 0 \[Degree], > PGRadiusNumberFunction -> (RotateOp[90 \[Degree]]@ > NumberForm[#, {3, 2}] &), > PGAngleNumberFunction -> (Identity[Text[Style[#, 10]]] &), > PGLabelRadiusFactor -> 1.15], > Red, > PolarDraw[1 + \[Theta]/(2 \[Pi]), {\[Theta], 0, 2 \[Pi]}]}}, > AspectRatio -> Automatic, > PlotRangePadding -> 0.5, > ImageSize -> 300] > > Next is the same curve with the angle measured clockwise from the y axis. > > Draw2D[ > {{DrawPolarGrid[{ComplexPolar[0.25, 0 \[Degree]], > ComplexPolar[2, 360 \[Degree]], > ComplexPolar[0.25, 45 \[Degree]], {2, 9}}, > PGLabelAxis -> 0 \[Degree], > PGRadiusNumberFunction -> (RotateOp[90 \[Degree]]@ > NumberForm[#, {3, 2}] &), > PGAngleNumberFunction -> (Mod[-# + 90 \[Degree], 360 \[Degree]] &), > PGLabelRadiusFactor -> 1.15], > Red, > PolarDraw[1 + \[Theta]/(2 \[Pi]), {\[Theta], 0, 2 \[Pi]}] // > ReflectionTransformOp[{1, 0}, {0, 0}] // > RotateOp[-90 \[Degree], {0, 0}]}}, > AspectRatio -> Automatic, > PlotRangePadding -> 0.5, > ImageSize -> 300] > > This uses the Presentations routines DrawPolarGrid, ComplexPolar, PolarDraw, > RotateOp and ReflectionTransformOp. > > In a few days this should appear on the archive that Peter Lindsay of the > Mathematics department at St. Andrews University kindly keeps for me. It > includes a downloadable notebook and a PDF copy of the notebook. > > http://www.st-andrews.ac.uk/~pl10/c/djmpark/ > > > David Park > djmpark at comcast.net > http://home.comcast.net/~djmpark/index.html > > > > > > > From: Mat' G. [mailto:ellocomateo at free.fr] > > Hi all, > > Is it possible to change a polarplot to get 0=B0 vertical "@ 12.00" and to > rotate clockwise? > > Best regards, > > Mateo > > Thank you, that would certainly have done the job. Yet, I found an easier/lighter way for my specific problem. Compare the following plots: Manipulate[ Show[ ParametricPlot[{ {Cos[Angle] Angle, Sin[Angle] Angle} , {Sin[Angle] Angle, Cos[Angle] Angle} }, {Angle, 0, CurrentAngle}, PlotStyle -> {Red, Green}] , PolarPlot[Angle, {Angle, 0, CurrentAngle}, PlotStyle -> {Dashed, Blue}] ] , {CurrentAngle, 0.01, 2 \[Pi]}] Cheers! ;-)