Re: Varying a constant in an ODE to Manipulate solution
- To: mathgroup at smc.vnet.net
- Subject: [mg126868] Re: Varying a constant in an ODE to Manipulate solution
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 14 Jun 2012 05:32:38 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201206130857.EAA03730@smc.vnet.net>
sol[c_] := {x[t], y[t], z[t]} /. First[ NDSolve[{y''[t] + Sin[y[t]/c] == 0, y'[0] == 0, y[0] == 1/(1 + c), x'[t] == t, x[0] == c^2, z'[t] == 2 c x[t] - y[t], z[0] == 2}, {x, y, z}, {t, -3, 3}]] Use a single Evaluate. For example, Manipulate[ Plot[Evaluate[{sol[c][[1]], sol[c][[2]]}], {t, -3, 3}, PlotStyle -> {Green, Thick}, ImageSize -> 200, AspectRatio -> Automatic, PlotRange -> {{-3, 3}, {-1.05, 8.05}}], {c, -0.5, 2, 0.2}] Manipulate[ Plot[Evaluate[Most[sol[c]]], {t, -3, 3}, PlotStyle -> {Green, Thick}, ImageSize -> 200, AspectRatio -> Automatic, PlotRange -> {{-3, 3}, {-1.05, 8.05}}], {c, -0.5, 2, 0.2}] Manipulate[ Plot[Evaluate[Rest[sol[c]]], {t, -3, 3}, PlotStyle -> {Green, Thick}, ImageSize -> 200, AspectRatio -> Automatic, PlotRange -> {{-3, 3}, {-10, 10}}], {c, -0.5, 2, 0.2}] Manipulate[ Plot[Evaluate[Drop[sol[c], {2}]], {t, -3, 3}, PlotStyle -> {Green, Thick}, ImageSize -> 200, AspectRatio -> Automatic, PlotRange -> {{-3, 3}, {-10, 10}}], {c, -0.5, 2, 0.2}] Bob Hanlon On Wed, Jun 13, 2012 at 4:57 AM, Narasimham <mathma18 at hotmail.com> wrote: > Same topic is continued. Thanks to Murray Eisenberg and Bob Hanlon > > All variables or a single variable are easily pocked out from sol[c_] > list for plotting. > But how to pick out two out of them for ParametricPlot ( 2D) ? > > sol[c_] := {x[t], y[t], z[t]} /. > First[NDSolve[{y''[t] + Sin[y[t]/c] == 0, y'[0] == 0, > y[0] == 1/(1 + c), x'[t] == t, x[0] == c^2, > z'[t] == 2 c x[t] - y[t], z[0] == 2}, {x, y, z}, {t, -3, = 3}]] > Manipulate[ > Plot[Evaluate[sol[c]], {t, -3, 3}, PlotStyle -> {Red, Thick}, > AspectRatio -> Automatic, > PlotRange -> {{-3, 3}, {-10, 10}}], {c, -0.5, 2, 0.2}] > Manipulate[ > Plot[Evaluate[sol[c][[1]]], {t, -3, 3}, PlotStyle -> {Red, Thick}, > AspectRatio -> Automatic, > PlotRange -> {{-3, 3}, {-10, 10}}], {c, -0.5, 2, 0.2}] > " 2 parameter Dynamic manipulation not OK " > Manipulate[ > Plot[{Evaluate[sol[c][[1]]], Evaluate[sol[c][[1]]]}, {t, -3, 3}, > PlotStyle -> {Green, Thick}, AspectRatio -> Automatic, > PlotRange -> {{-3, 3}, {-10, 10}}], {c, -0.5, 2, 0.2}] > > Regards > Narasimham >
- References:
- Varying a constant in an ODE to Manipulate solution
- From: Narasimham <mathma18@hotmail.com>
- Varying a constant in an ODE to Manipulate solution