Re: DSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg126951] Re: DSolve
- From: Christoph Lhotka <christoph.lhotka at fundp.ac.be>
- Date: Wed, 20 Jun 2012 03:48:34 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201206190714.DAA26926@smc.vnet.net>
Hello, I do not reproduce your result: $Version 8.0 for Linux x86 (64-bit) (October 10, 2011) mypara={lk->1/1998,mk->1/2,li->1/1998,mi->1/2}; mymatrix=Transpose[{{-li-lk,lk,0,li},{mk,-li-mk,li,0},{0,0,0,0},{mi,0,lk,-lk-mi}}]//.mypara; res=DSolve[{Inner[Equal,N[mymatrix].{u[t],x[t],y[t],z[t]},{D[u[t],t],D[x[t],t],D[y[t],t],D[z[t],t]},List],u[0]==1,x[0]==0,y[0]==0,z[0]==0},{u[t],x[t],y[t],z[t]},t]//Simplify; res//.t->0 {{u[0]->1.,x[0]->0.,y[0]->-2.22045*10^-16,z[0]->-2.1684*10^-19}} res2=DSolve[{Inner[Equal,N[mymatrix].{u[t],x[t],y[t],z[t]},{D[u[t],t],D[x[t],t],D[y[t],t],D[z[t],t]},List],u[0]==a,x[0]==b,y[0]==c,z[0]==d},{u[t],x[t],y[t],z[t]},t]//Simplify; res2//.{a->1,b->0,c->0,d->0,t->0} {{u[0]->1.,x[0]->4.55365*10^-18,y[0]->0.,z[0]->4.98733*10^-17}} So it seems to be correct what DSolve did. Best, Christoph PS: Try the example you published here with a fresh Kernel On 06/19/2012 09:14 AM, Eirik Larsen Følstad wrote: > Hi, > > I'm trying solve differential equations with DSolve, but get an output that does no fulfill the initial conditions. > > Here is the setup running with Mathematica 8.0.1.0 for Students on a Mac OS 10.6.8; > > > mypara = {lk -> 1/1998, mk -> 1/2, li -> 1/1998, mi -> 1/2}; > > mymatrix = > Transpose[{{-li - lk, lk, 0, li}, {mk, -li - mk, li, 0}, {0, 0, 0, > 0}, {mi, 0, lk, -lk - mi}}] //. mypara; > > > With numeric initial values, I get a result as expected; > > res = DSolve[{Inner[Equal, > N[mymatrix].{u[t], x[t], y[t], z[t]}, {D[u[t], t], D[x[t], t], > D[y[t], t], D[z[t], t]}, List], u[0] == 1, x[0] == 0, y[0] == 0, > z[0] == 0 }, {u[t], x[t], y[t], z[t]}, t] // Simplify ; > > res //. t -> 0 > > gives; > {{u[0] -> 1., x[0] -> 0., y[0] -> 2.22045*10^-16, z[0] -> 2.1684*10^-19}} > > > While with symbolic initial values, I get a result that is not as expected; > > res2 = DSolve[{Inner[Equal, > N[mymatrix].{u[t], x[t], y[t], z[t]}, {D[u[t], t], D[x[t], t], > D[y[t], t], D[z[t], t]}, List], u[0] == a, x[0] == b, y[0] == c, > z[0] == d }, {u[t], x[t], y[t], z[t]}, t] // Simplify ; > > res2 //. {a -> 1, b -> 0, c -> 0, d -> 0, t -> 0} > > gives; > {{u[0] -> 1., x[0] -> -3.37404*10^-16, y[0] -> -3.46945*10^-18, z[0] -> -1.}} > > Where the result is not according to the initial result. > > What am I doing wrong? > > > Best regards, > Eirik > > > >
- References:
- DSolve
- From: Eirik Larsen Følstad <eirik.folstad@q2s.ntnu.no>
- DSolve