Re: nested sums
- To: mathgroup at smc.vnet.net
- Subject: [mg125231] Re: nested sums
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 1 Mar 2012 05:33:03 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201202291226.HAA28458@smc.vnet.net>
Sum[x^a y^b z^c, {a, 0, Infinity}, {b, 0, a}, {c, 0, a - b}] -(1/((-1 + x)*(-1 + x*y)*(-1 + x*z))) Bob Hanlon 2012/2/29 Severin Po=C5=A1ta <severin at km1.fjfi.cvut.cz>: > I have noticed that > > Sum[x^a y^b z^c, {a, 0, Infinity}, {b, 0, Infinity}, {c, 0, a - b}] > > produces "wrong" result > > (-y + z - y z + x y z)/((-1 + x) (-1 + y) (y - z) (-1 + x z)) > > because a-b is not checked to be nonnegative in the nested sums. This is > probably by design (?). > I wonder if I can achieve such check to be perfomed. > > This does not work: > > Sum[x^a y^b z^c If[a - b >= 0, 1, 0], {a, 0, Infinity}, {b, 0, > =C2 Infinity}, {c, 0, a - b}] > > This also does not work: > > Sum[x^a y^b z^c Piecewise[{{1, a - b >= 0}}], {a, 0, Infinity}, {b, 0, > =C2 =C2 Infinity}, {c, 0, a - b}] > > > It is also interesting that Sum[...,{},{}] is not equivalent to > Sum[Sum[...,{}],{}]. The following produces correct result: > > s= Sum[x^a y^b z^c Piecewise[{{1, a - b >= 0}}], {c, 0, a - b}]; > s1=Sum[s, {b, 0, Infinity}]; > Sum[s1,{a, 0, Infinity}] > > > -(1/((-1 + x) (-1 + x y) (-1 + x z))) > > > Interesting. > > S. >