Re: Piecewise ColorFunction
- To: mathgroup at smc.vnet.net
- Subject: [mg125653] Re: Piecewise ColorFunction
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Mon, 26 Mar 2012 01:45:15 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201203250517.AAA12261@smc.vnet.net>
>From the documentation: "With the usual default setting ColorFunctionScaling -> True, all arguments supplied to func are scaled to lie in the range 0 to 1." ClearAll[f]; f[y_] = Piecewise[{{Green, y < 0}, {Red, y >= 0}}]; Plot[Sin[x], {x, 0, 4 Pi}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, f[y - 1/2]]] Plot[Sin[x], {x, 0, 4 Pi}, PlotStyle -> Thick, ColorFunction -> Function[{x, y}, f[y]], ColorFunctionScaling -> False] ClearAll[f]; f = Piecewise[{{Green, #2 < 0}, {Red, #2 >= 0}}] &; Plot[Sin[x], {x, 0, 4 Pi}, PlotStyle -> Thick, ColorFunction -> f, ColorFunctionScaling -> False] Bob Hanlon On Sun, Mar 25, 2012 at 1:17 AM, Hugh Goyder <h.g.d.goyder at cranfield.ac.uk> wrote: > The first example below works to give a plot style with colours that vary with y-values. I then try to define a Piecewise function for the colour and this does not work. Am I doing something wrong? Thanks for any assistance. > > Plot[Sin[x], {x, 0, 4 Pi}, PlotStyle -> Thick, > ColorFunction -> Function[{x, y}, ColorData["NeonColors"][y]]] > > > ClearAll[f]; > f[x_, y_] := Piecewise[{{Green, y < 0}, {Red, y >= 0}}] > > > Plot[Sin[x], {x, 0, 4 Pi}, PlotStyle -> Thick, ColorFunction -> f] >
- Follow-Ups:
- Re: Piecewise ColorFunction
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: Piecewise ColorFunction
- References:
- Piecewise ColorFunction
- From: Hugh Goyder <h.g.d.goyder@cranfield.ac.uk>
- Piecewise ColorFunction