Re: Rules on integer elemens of the list
- To: mathgroup at smc.vnet.net
- Subject: [mg128854] Re: Rules on integer elemens of the list
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Fri, 30 Nov 2012 05:58:45 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121129110747.2A45D6912@smc.vnet.net>
Generalize the form of the pattern to encompass both cases. list=1/(2+3 z)+1./(2+4 z)+2./(2+5 z); Cases[list,_.*Power[Plus[_,Times[_,z]],-1]] {1/(2 + 3*z), 1./(2 + 4*z), 2./(2 + 5*z)} DeleteCases[list,_.*Power[Plus[_,Times[_,z]],-1]] 0 Or to do literally what you asked list/.x_?(IntegerQ[Numerator[#]]&):> N[Numerator[x]]/Denominator[x] 1./(2 + 3*z) + 1./(2 + 4*z) + 2./(2 + 5*z) Bob Hanlon On Thu, Nov 29, 2012 at 6:07 AM, <bar at antyspam.ap.krakow.pl> wrote: > > Hi, > I have a list: > > list = 1/(2 + 3 z) + 1./(2 + 4 z) + 2./(2 + 5 z) > Cases[list, Times[_, Power[Plus[_, Times[_, z]], -1]]] > > OUT: > > {1./(2 + 4 z), 2./(2 + 5 z)} > > The problem is different between: > 1/x//FullForm gives Power[x,-1] > 1./x//FullForm gives Times[1.,Power[x,-1]] > > I have a list with big number of such expression and i have to exclude elements like (a/(b+c x)) > a cause of numerators equal 1 (not 1.) > > Is a simple way to convert Numeratots 1 to 1. ?? > > N[2/x] works fine gives 2./x > but > N[1/x] doesn,t work :-( > > Regards , Olaf >
- References:
- Rules on integer elemens of the list
- From: bar@ANTYSPAM.ap.krakow.pl
- Rules on integer elemens of the list