Re: Problem in solving nonlinear Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg128305] Re: Problem in solving nonlinear Differential Equation
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Sat, 6 Oct 2012 01:48:12 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121005065227.E834268D5@smc.vnet.net>
With your code, you should see an error message that reads: "NDSolve::dvnoarg: The function x appears with no arguments. >>" Change (x^3)[t] to x[t]^3 Your second ParametricPlot can be written as a simple Plot. With other simplifications: Clear[x]; Q = 100; \[CapitalGamma] = 50; Subscript[\[Omega], 0] = 10; Subscript[V, p] = 1/2; Subscript[C, 0] = 406*10^-6; \[Phi] = 90; \[Gamma] = 1/Q; Subscript[V, 1][t] = Sqrt[2] Subscript[V, p] Sin[2 Subscript[\[Omega], 0] t]; Subscript[k, 3] = 5; eqn = x''[t] + \[Gamma] Subscript[\[Omega], 0] x'[t] + Subscript[\[Omega], 0]^2 (1 + Subscript[C, 0] Subscript[V, 1][t]) x[ t] - \[CapitalGamma] Sin[Subscript[\[Omega], 0] t + \[Phi]] + Subscript[k, 3] x[t]^3 == 0 // Simplify; sol = NDSolve[{eqn, x[0] == 1/2, x'[0] == 0}, x, {t, 0, 50}][[1]]; ParametricPlot[Evaluate[{x[t], x'[t]} /. sol], {t, 0, 50}, Frame -> True, AxesLabel -> {"x", Overscript[x, "."]}, AspectRatio -> 1, PlotStyle -> {{Red, AbsoluteThickness[1]}}, BaseStyle -> {FontFamily -> "Courier", FontWeight -> "Bold", FontSize -> 16}] Plot[x[t] /. sol, {t, 0, 50}, Frame -> True, AxesLabel -> {"t", "x"}, AspectRatio -> .5, PlotStyle -> {{Green, AbsoluteThickness[1]}}, BaseStyle -> {FontFamily -> "Courier", FontWeight -> "Bold", FontSize -> 16}] Bob Hanlon On Fri, Oct 5, 2012 at 2:52 AM, Rahul Chakraborty <rahul.6sept at gmail.com> wrote: > Dear All, > > I'm facing some problem in solving non-linear differential equation. I'm not getting output.The code as follows: > > Clear[x,Q,\[CapitalGamma],\[Phi]]; > Q:=100; > \[CapitalGamma]:=50; > Subscript[\[Omega], 0]:=10; > Subscript[V, p]:=1/2; > Subscript[C, 0]:=406 * 10^-6; > \[Phi]:=90; > \[Gamma]:=1/Q; > Subscript[V, 1][t]:=Sqrt[2] Subscript[V, p]Sin[2Subscript[\[Omega], 0]t]; > Subscript[k, 3]:=5; > eqn= x''[t]+\[Gamma] Subscript[\[Omega], 0]x'[t]+Subscript[\[Omega], 0]^2 (1+Subscript[C, 0]Subscript[V, 1][t])x[t]-\[CapitalGamma] Sin[Subscript[\[Omega], 0]t+\[Phi]]+Subscript[k, 3](x^3)[t]==0//Simplify; > sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,50}][[1]] > ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,50},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[1]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] > ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,50},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[1]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}] > > > Regards, > > rahul >
- References:
- Problem in solving nonlinear Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving nonlinear Differential Equation