Re: How to simplify hypergeometrics
- To: mathgroup at smc.vnet.net
- Subject: [mg128411] Re: How to simplify hypergeometrics
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Tue, 16 Oct 2012 20:13:11 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <k55o3n$e7q$1@smc.vnet.net> <k586hh$is3$1@smc.vnet.net> <k5g11t$3oi$1@smc.vnet.net>
On 15 Okt., 05:49, Roland Franzius <roland.franz... at uos.de> wrote: > Am 12.10.2012 06:32, schrieb Roland Franzius: > > > > > > > Am 11.10.2012 08:14, schrieb Dr. Wolfgang Hintze: > >> Consider the probability function > > >> p[n_, a_, b_, k_] := > >> Binomial[k - 1, a - 1]*(Binomial[n - k, b - a]/Binomial[n, b]) = /; {0 > >> <= a <= > >> b, n >= a} > > >> In[68]:= p[n, a, b, k] > > >> Out[68]= (Binomial[-1 + k, -1 + a]*Binomial[-k + n, -a + b])/ > >> Binomial[n, b] > > >> Now let's look for the zeroeth moment k^0 (for the higher ones the > >> situation is similar) > > >> In[69]:= k0 = Sum[p[n, a, b, k], {k, 1, n}] > > >> Out[69]= ((-Binomial[-1, -a + b])*Binomial[n, -1 + a]* > >> Hypergeometric2F1[1 - a + b, 1 + n, 2 - a + n, 1] + > >> Binomial[0, -1 + a]*Binomial[-1 + n, -a + b]* > >> HypergeometricPFQ[{1, 1, 1 - a + b - n}, {2 - a, 1 - n}, 1= ])/ > >> Binomial[n, b] > > >> This should give 1, but it looks clumsy. > > > All general expression with HypergeometricPFQ generally will be wrong > > for integer parameters in the numerator parameters. > > > One has to regularize by extracting and cancelling infinite Gamma > > factors at negative integers but that means to have control of the > > evaluation by understanding the limit formulas. > > > Contrary to your assumption of a normalized ditribution the direct > > conversion > > > Binomial[n_,k_]:> Pochhammer[n-k+1,k]/k! leaves you with the expression > > > p[n_, a_, b_, k_]:=(b! Pochhammer[1 - a + k, -1 + a] Pochhamme= r[ > > 1 + a - b - k + n, -a + b])/((-1 + a)! (-a + b)! Pochhammer[ > > 1 - b + n, b]) > > > Simplify[Sum[p[6, a, b, k], {k, 0, n}]] /. {n->6 ,a -> 1, b -> 3} > > > is not independent of a,b,n > > > Perhaps a normalization constant is missing? In any binomial > > distribution the normalized distribution has to contain n-th powers of > > the parameters > > So, at least, I found some material related to your problem. > > On the internet: > > http://www.math.uah.edu/stat/index.html > > Especially > > http://www.math.uah.edu/stat/urn/OrderStatistics.html > > Mathematica 8 knows about OrderStatistics. > > In: Assuming[{{k, n, m, i} \[Element] Integers, > 1 <= m, 1 <= i <= n <= m}, > FunctionExpand[ > Sum[ Binomial[k - 1, i - 1] Binomial[m - k, > n - i] /. {Binomial[a_, b_] :> a!/b!/(a - b)!}, {k, i, > m - n + i}]]] > > Out: Gamma[1 + m]/(Gamma[1 + m - n] Gamma[1 + n]) > > In the Mathematica Help for "OrderDistribution" you will find an > example, adapted here to the discrete case > > In: \[ScriptCapitalD] = > OrderDistribution[{DiscreteUniformDistribution[{1, n}], a}, b]; > > In: CDF[\[ScriptCapitalD], x] > > Out: > > \[Piecewise] > -BetaRegularized[-(1/n)+k/n,b,1+a-b]+ > BetaRegularized[k/n,b,1+a-b] k>=1&&k-n<0 > 1-BetaRegularized[1-1/n,b,1+a-b] k>=1&&k-n==0 > -BetaRegularized[-(1/n),b,1+a-b] k>=1&&k-n<=0 > 0 True > > Perhaps it helps. > > -- > > Roland Franzius Thank you for your hints. Unfortunately your sum is different from the one I'm looking for. I still need to consider your interesting remark on the OrderDistribution. Regards, Wolfgang