Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2012

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: How can I use FindMaximum to get a result better than MachinePrecision?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg127961] Re: How can I use FindMaximum to get a result better than MachinePrecision?
  • From: Ray Koopman <koopman at sfu.ca>
  • Date: Wed, 5 Sep 2012 03:10:10 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-newout@smc.vnet.net
  • Delivered-to: mathgroup-newsend@smc.vnet.net
  • References: <k24irq$1k9$1@smc.vnet.net>

On Sep 4, 2:50 am, David Kirkby <drkir... at gmail.com> wrote:
> I've tried this:
>
> In[2]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8}]
>
> Out[2]= {1.57918, {x -> 0.785398}}
>
> Then played around to try to get a more accurate result.
>
> In[9]:= FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},
> AccuracyGoal->20, PrecisionGoal->20]
>
> Out[9]= {1.57918, {x -> 0.785398}}
>
> In[10]:= Precision[%]
>
> Also:
>
> In[7]:= N[FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},
> AccuracyGoal->200, PrecisionGoal->200],100]
>
> Out[7]= {1.57918, {x -> 0.785398}}
>
> In[8]:= Precision[%]
>
> Out[8]= MachinePrecision
>
> Any suggestions?

FindMaximum[8 E^(-x) Sin[x] -1,{x,0,8},
AccuracyGoal->30, PrecisionGoal->30, WorkingPrecision->40]

{1.579175535558675594018935476481035678702,
 {x -> 0.7853981633974483096234856042864548995134}}



  • Prev by Date: Re: A new FrontEnd
  • Next by Date: Re: A new FrontEnd
  • Previous by thread: Re: How can I use FindMaximum to get a result better than MachinePrecision?
  • Next by thread: Re: How can I use FindMaximum to get a result better than MachinePrecision?