Solving this in mathematica?
- To: mathgroup at smc.vnet.net
- Subject: [mg128054] Solving this in mathematica?
- From: Leon <leon.he88 at gmail.com>
- Date: Wed, 12 Sep 2012 02:58:24 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
I have following code in mathematica: ------------------------------------------------------------ rbar = 0.006236 rt = r_bar k = 0.95 sigmar = 0.002 betazr = -0.00014 sigmaz = 0.4 pi = 0.99 chi = 0.05 Cbar = -3.7 alpha1[n_] := alpha1[n] = alpha1[n - 1] + alpha2[n - 1] alpha2[n_] := alpha2[n] = k (alpha2[n - 1]) sigma1sq[n_] := sigma1sq[n] = sigma2sq[n - 1] + 2 sigma12[n - 1] + sigmaz^2 sigma12[n_] := sigma12[n] = k (sigma12[n - 1]) + k (sigma2sq[n - 1]) + betazr sigma2sq[n_] := sigma2sq[n] = (k^2) (sigma2sq[n - 1]) + sigmar^2 phi1[n_] := phi1[n] = phi1[n - 1] + phi2[n - 1] + (0.5) (sigmaz^2) phi2[n_] := phi2[n] = k (phi2[n - 1]) + (1 - k) (rbar) psi[n_] := psi[n] = phi1[n] - (0.5) (sigma1sq[n]) alpha1[0] = 0 alpha2[0] = 1 sigma1sq[0] = 0 sigma12[0] = 0 sigma2sq[0] = 0 phi1[0] = 0 phi2[0] = 0 B[h_, r_] := Exp[(-alpha1[h]) (r) - psi[h]] Exp[Cbar - beta] Sum[(Pi^x) B[x, r], {x, 1, 1000}] ---------------------------------------------------------------------- and I am wondering if it is possible to solve the last line such that I have "r" as a function of "beta", satisfying Exp[Cbar - beta] Sum[(Pi^x) B[x, r], {x, 1, 1000}] = 1 Because ultimately, I would need to integrate a function J[r] over "beta", so if I don't have "r" as a function of "beta", I don't know how to do the integration of J[r]. Thank you!! L.
- Follow-Ups:
- Re: Solving this in mathematica?
- From: Bob Hanlon <hanlonr357@gmail.com>
- Re: Solving this in mathematica?