Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2012

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: NonlinearModelFit and assumptions on fit parameters

  • To: mathgroup at smc.vnet.net
  • Subject: [mg128213] Re: NonlinearModelFit and assumptions on fit parameters
  • From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
  • Date: Tue, 25 Sep 2012 04:38:56 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-newout@smc.vnet.net
  • Delivered-to: mathgroup-newsend@smc.vnet.net

Hi

I have a set of data (x, y) that I can succesfully fit a nonlinear function to using NonlinearModelFit:


data = {{1, 1}, {2, 2}, {3, 3.2}};
fitFuncExactNoLosses[a_, b_, x_] := a*x^2 + b + x;
nlm = NonlinearModelFit[data, fitFuncExactNoLosses[a, b, x],
  {
   {a, 1},
   {b, 1}},
  x]


However, the paramter "b" comes out negative and it *must* be positive. Is there a way to utilize assumptions such that b is constrained to be grater than zero?

Best,
Niels.

Hi, Niels,
Try this:

ff = FindFit[data, {a*x^2 + b + x, b > 0.05}, {{a, 1}, {b, 1}}, x]

Show[{ListPlot[data, PlotStyle -> Red],
  Plot[(a*x^2 + b + x) /. ff, {x, 0, 3}]}]

Have fun, Alexei


Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG

Office phone :  +352-2454-2566
Office fax:       +352-2454-3566
mobile phone:  +49 151 52 40 66 44

e-mail: alexei.boulbitch at iee.lu







  • Prev by Date: Re: Re: creating a graphic in a text cell
  • Next by Date: DynamicModule with an infinite variable
  • Previous by thread: Re: NonlinearModelFit and assumptions on fit parameters
  • Next by thread: Stylesheet for input side by side with output