Re: Convolve : Different Looking Results
- To: mathgroup at smc.vnet.net
- Subject: [mg130649] Re: Convolve : Different Looking Results
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Sun, 28 Apr 2013 05:17:35 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <klffg1$jlj$1@smc.vnet.net>
Am 27.04.2013 05:08, schrieb Polar Coords: > Dear Mathgroup, > > May be someone could please explain the following behaviour : > > > In[15]:= Convolve[Exp[-x] UnitStep[x], Sin[2 x] UnitStep[x], x, y, > Assumptions -> y > 0] > > Out[15]= -(2/5) (Cos[2 y] - Cosh[y] - Cos[y] Sin[y] + Sinh[y]) > > The two expressions are equivalent. In[15]:= {1/5 (2 E^-t - 2 Cos[2 t] + Sin[2 t]), -(2/5) (Cos[2 v] - Cosh[v] - Cos[v] Sin[v] + Sinh[v])} // TrigToExp // ExpandAll Out[15]= {(2 E^-t)/5 - (1/5 - I/10) E^(-2 I t) - (1/5 + I/10) E^(2 I t), (2 E^-v)/5 - (1/5 - I/10) E^(-2 I v) - (1/5 + I/10) E^(2 I v)} The different output form of that expression seem to be a consequence of internal lexicographic expression ordering, a problem, one encounters frequently. Here, the simplification process has a discontinuity at the lexicographic order of the dummy summation variable "uu" and the dummy output expression variable. Convolve[Exp[-uu] UnitStep[uu], Sin[2 uu] UnitStep[uu], uu, #, Assumptions -> (# > 0)] & /@ {s, t, u, v, w, x, y, z} {1/5 (2 E^-s - 2 Cos[2 s] + Sin[2 s]), 1/5 (2 E^-t - 2 Cos[2 t] + Sin[2 t]), 1/5 (2 E^-u - 2 Cos[2 u] + Sin[2 u]), -(2/5) (Cos[2 v] - Cosh[v] - Cos[v] Sin[v] + Sinh[v]), -(2/5) (Cos[2 w] - Cosh[w] - Cos[w] Sin[w] + Sinh[w]), -(2/5) (Cos[2 x] - Cosh[x] - Cos[x] Sin[x] + Sinh[x]), -(2/5) (Cos[2 y] - Cosh[y] - Cos[y] Sin[y] + Sinh[y]), -(2/5) (Cos[2 z] - Cosh[z] - Cos[z] Sin[z] + Sinh[z])} -- Roland Franzius