Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Fibonacci integers

  • To: mathgroup at smc.vnet.net
  • Subject: [mg129667] Re: Fibonacci integers
  • From: James Stein <mathgroup at stein.org>
  • Date: Sun, 3 Feb 2013 20:19:36 -0500 (EST)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-newout@smc.vnet.net
  • Delivered-to: mathgroup-newsend@smc.vnet.net
  • References: <20130203074843.D429168B0@smc.vnet.net>

If you rewrite 'm' as a matrix, you do get True:

m={{1,1},{1,2}};
n=3;
MatrixPower[m,n]==
{{Fibonacci[2 n-1],Fibonacci[2 n]},
{Fibonacci[2 n],Fibonacci[2 n+1]}}


On Sat, Feb 2, 2013 at 11:48 PM, Andre Hautot <ahautot at ulg.ac.be> wrote:
>
> Hi, let
> m={1,1},{1,2}
> and n be an  integer
>
> MatrixPower[m, n]  = = {{Fibonacci[2 n - 1], Fibonacci[2 n]},
> {Fibonacci[2 n], Fibonacci[2 n + 1]}}
>
> should be indentically True
>
> I have tried FunctionExpand and FullSimplify without success, any idea ?
> Thanks in advance,
>
> Andre
>



  • Prev by Date: Re: Labelling each curve and changing grid in ParametricPlot
  • Next by Date: Re: exponential regression
  • Previous by thread: Fibonacci integers
  • Next by thread: Re: Fibonacci integers